

CPMpy: Constraint Programming and Modeling in Python

Constraint Programming is a methodology for solving combinatorial optimisation problems like assignment problems or covering, packing and scheduling problems. Problems that require searching over discrete decision variables.

CPMpy is a Constraint Programming and Modeling library in Python, based on numpy, with direct solver access. Key features are:

	Easy to integrate with machine learning and visualisation libraries, because decision variables are numpy arrays.

	Solver-independent: transparently translating to CP, MIP, SMT and SAT solvers

	Incremental solving and direct access to the underlying solvers

	and much more…

Usage

	Modeling and solving with CPMpy

Supported solvers

CPMpy can translate to many different solvers, and even provides direct access to them.

To make clear how well supported and tested these solvers are, we work with a tiered classification:

	
	Tier 1 solvers: passes all internal tests, passes our bigtest suit, will be fuzztested in the near future
	
	“ortools” the OR-Tools CP-SAT solver

	“pysat” the PySAT library and its many SAT solvers (“pysat:glucose4”, “pysat:lingeling”, etc)

	
	Tier 2 solvers: passes all internal tests, might fail on edge cases in bigtest
	
	“minizinc” the MiniZinc modeling system and its many solvers (“minizinc:gecode”, “minizinc:chuffed”, etc)

	“z3” the SMT solver and theorem prover

	“gurobi” the MIP solver

	“PySDD” a Boolean knowledge compiler

	“exact” the Exact integer linear programming solver

	
	Tier 3 solvers: they are work in progress and live in a pull request
	
	“gcs” the Glasgow Constraint Solver

We hope to upgrade many of these solvers to higher tiers, as well as adding new ones. Reach out on github if you want to help out.

Advanced guides:

	How to debug

	Obtaining multiple solutions

	UnSAT core extraction with assumption variables

	Developer guide

	Adding a new solver

Open Source

Source code and bug reports at https://github.com/CPMpy/cpmpy

CPMpy has the open-source Apache 2.0 license [https://github.com/cpmpy/cpmpy/blob/master/LICENSE] and is run as an open-source project. All discussions happen on Github, even between direct colleagues, and all changes are reviewed through pull requests.

Join us! We welcome any feedback and contributions. You are also free to reuse any parts in your own project. A good starting point to contribute is to add your models to the examples folder.

Are you a solver developer? We are keen to integrate solvers that have a python API on pip. If this is the case for you, or if you want to discuss what it best looks like, do contact us!

API documentation:

	Expressions (cpmpy.expressions)

	Model (cpmpy.Model)

	Solver interfaces (cpmpy.solvers)

	Expression transformations (cpmpy.transformations)

Modeling and solving with CPMpy

This page explains and demonstrates how to use CPMpy to model and solve combinatorial problems, so you can use it to solve for example routing, scheduling, assignment and other problems.

Installation

Installation is available through the pip python package manager. This will also install and use ortools as default solver:

pip install cpmpy

See installation instructions for more details.

Using the library

To conveniently use CPMpy in your python project, include it as follows:

from cpmpy import *

This will overload the built-in any(), all(), min(), max(), sum() functions, such that they create CPMpy expressions when used on decision variables (see below). This convenience comes at the cost of some overhead for all uses of these functions in your code.

You can also import it as a package, which does not overload the python built-ins:

import cpmpy as cp

We will use the latter in this document.

Decision variables

Constraint modeling consists of expressing constraints on decision variables, after which a solver will find a satisfying assignment to these decision variables.

CPMpy supports discrete decision variables, namely Boolean and integer decision variables:

import cpmpy as cp

b = cp.boolvar(name="b")
x = cp.intvar(1,10, name="x")

Decision variables have a domain, a set of allowed values. For Boolean variables this is implicitly the values ‘False’ and ‘True’. For Integer decision variables, you have to specify the lower-bound and upper-bound (1 and 10 respectively above).

Decision variables have a unique name. You can set it yourself, otherwise a unique name will automatically be assigned to it. If you print print(b, x) decision variables, it will print the name. Did we already say the name must be unique? Many solvers use the name as unique identifier, and it is near-impossible to debug with non-uniquely named variables.

A solver will set the value of the decision variables for which it solved, if it can find a solution. You can retrieve it with v.value(). Variables are not tied to a solver, so you can use the same variable in multiple models and solvers. When a solve call finishes, it will overwrite the value of all its decision variables.

Finally, by providing a shape you automatically create a numpy n-dimensional array of decision variables. They automatically get their index appended to their name to ensure it is unique:

import cpmpy as cp

b = cp.boolvar(shape=4, name="b")
print(b) # [b[0] b[1] b[2] b[3]]

x = cp.intvar(1,10, shape=(2,2), name="x")
print(x) # [[x[0,0] x[0,1]]
 # [x[1,0] x[1,1]]]

You can also call v.value() on these n-dimensional arrays, which will return an n-dimensional numpy array of values. And you can do vectorized operations and comparisons, like in regular numpy. As we will see below, this is very convenient and avoids having to write out many loops. It also makes it compatible with many existing scientific python tools, including machine learning and visualisation libraries, so a lot less glue code to write.

See the API documentation on variables for more detailed information.

Creating a model

A model is a collection of constraints over decision variables, optionally with an objective function. It represents a problem for which a solution must be found, e.g. by a solver. A solution is an assignment to the decision variables, such that each of the constraints is satisfied.

In CPMpy, the Model() object is a simple container that stores a list of CPMpy expressions representing constraints. It can also store a CPMpy expression representing an objective function that must be minimized or maximized. Constraints are added in the constructor, or using the built-in += addition operator that corresponds to calling the __add__() function.

Here is an example, where we explain how to express constraints in the next section:

import cpmpy as cp

Decision variables
(x,y,z) = cp.intvar(1,10, shape=3) # Python unpacks the array into the individual variables

Initialise the model, here with 2 constraints
m = cp.Model(
 x == 1,
 x + y > 5
)

Adding more constraints
m += (y - z != x)
m += (x + y + z <= 15)
you can also add a list of constraints, which is interpreted as a conjunction of constraints
m += [v <= 9 for v in [x,y,z]]

print(f"The model contains {len(m.constraints)} constraints")
print(m) # pretty printing of the model, very useful for debugging

The Model() object has a number of other helpful functions, such as to_file() to store the model and copy() for creating a copy.

Expressing constraints

A constraint is a relation between decision variables that restricts what values these variables can take.

We now review the different types of constraints in CPMpy.

Logical constraints

To express conjunction, disjunction and negation of a constraint, we overwite the Python bitwise operators: & for conjunction (read as ‘and’), | for disjunction (read as ‘or’) and ~ for negation (read as ‘not’).

Some examples:

import cpmpy as cp

Decision variables
(a,b,c) = cp.boolvar(shape=3)

m = cp.Model(
 a | b,
 ~(a & c),
 (b | c) & ~a
)

Unfortunately, we can not overwite the and, or and not expression that we typically use in if expressions, so remember to use &,|,~ instead. Also unfortunate is that Python bitwise operators have precedence over all other operators, so a == 0 | b == 1 is wrongly interpreted by Python as a == (0 | b) == 1 instead of the (a == 0) | (b == 1) that you probably intend. So make sure to always write explicit brackets when using &,|,~!

For n-ary conjunctions and disjunctions we overloaded the all() and any() functions:

import cpmpy as cp

Decision variables
bv = cp.boolvar(shape=3)

m = cp.Model(
 cp.any([bv[0], bv[1], bv[2]]),
 cp.any(v for v in bv), # equivalent to above
 cp.any(bv), # equivalent to above
 ~cp.all(bv)
)

These functions accept manually created arrays, iterators or n-dimensional arrays alike.

For equivalence, also called reification, we overload the == comparison:

import cpmpy as cp

Decision variables
a,b,c = cp.boolvar(shape=3)

m = cp.Model(
 a == b, # equivalence: (a -> b) & (b -> a)
 a != b # same as ~(a==b) and same as (a == ~b)
)

Finally for implication we decided that it would be most readable to introduce a function implies() to our (Boolean) expression objects, e.g.:

import cpmpy as cp

Decision variables
a,b,c = cp.boolvar(shape=3)

m = cp.Model(
 a.implies(b),
 b.implies(a),
 a.implies(~c),
 (~c).implies(a)
)

For reverse implication, you switch the arguments yourself; it is difficult to read reverse implications out loud anyway. And as before, always use brackets around subexpressions to avoid surprises!

Simple comparison constraints

We overload Pythons comparison operators: ==, !=, <, <=, >, >=. Comparisons are allowed between any CPMpy expressions as well as Boolean and integer constants.

On a technical note, we treat Booleans as a subclass of integer expressions. This means that a Boolean (output) expression can be used anywhere a numeric expression can be used, where True is treated as 1 and False as 0. But the inverse is not true: integers can NOT be used with Boolean operators, even when you intialise their domain to (0,1) they are still not Boolean:

import cpmpy as cp

bv = cp.boolvar()
iv = cp.intvar(0,10)
iv01 = cp.intvar(0,1)

m = cp.Model(
 bv == True, # allowed
 bv > 0, # allowed but silly
 iv > 3, # allowed
 iv != 6, # allowed
 iv == True, # allowed but avoid, means `iv == 1`
 iv == bv, # allowed but avoid, means `(iv == 1) == bv`
 # bv & iv, # not allowed, choose one of:
 bv & (iv == 1), # allowed
 bv & (iv != 0), # allowed
 # bv & iv01, # not allowed, still an integer
)

CPMpy’s array of decision variables is numpy-compatible, so it accepts vectorized operations on arrays of expressions:

import cpmpy as cp

iv = cp.intvar(0, 10, shape=3)

m = cp.Model(
 iv == 1, # a vectorized operation, equivalent to:
 [iv[0] == 1, iv[1] == 1, iv[2] == 1]
)

You can convert a pure Python list of expressions into a numpy-compatible array by using cpm_array():

import cpmpy as cp

x,y,z = cp.intvar(0, 10, shape=3)

m = cp.Model(
 # [x,y,z] == 1, # does not work on plain Python arrays
 cp.cpm_array([x,y,z]) == 1 # does work, vectorized
)

Arithmetic constraints

We overload Python’s built-in arithmetic operators +,-,*,//,%. These can be used to built arbitrarily nested numeric expressions, which can then be turned into a constraint by adding a comparison to it.

We also overwrite the built-in functions abs(),sum(),min(),max() which can be used to created numeric expressions. Some examples:

import cpmpy as cp

xs = cp.intvar(0, 10, shape=3, name="xs")
ys = cp.intvar(1, 10, shape=3, name="ys")

m = cp.Model(
 xs[0] - ys[0] == 5,
 cp.sum(xs) != 1,
 3*xs[0] < cp.abs(5 - cp.max(xs) + cp.min(ys))
)

All these operations can also be performed vectorized on arrays of the same shape, like in typical numpy code:

import cpmpy as cp
import numpy as np

xs = cp.intvar(0, 10, shape=3, name="xs")
w = np.array([1,3,-5])

m = cp.Model(
 cp.sum(w*xs) > 3, # 1*xs[0] + 3*xs[1] + (-5)*xs[2] > 3
 xs + w != 0, # [xs[0] + 1 != 0, xs[1] + 3 != 0, xs[2] + (-5) != 0]
 cp.max(xs - w) == np.arange(3), # max(xs[0] - 1) == 0, max(xs[1] - 3) == 1, max(xs[2] + 5) == 2]
)

Note that because of our overloading of +,-,*,// some numpy functions like np.sum(some_array) will also create a CPMpy expression when used on CPMpy decision variables. However, this is not guaranteed, and other functions like np.max(some_array) will not. To avoid surprises, you should hence always take care to call the CPMpy functions cp.sum(),cp.max()etc. We did overloadsome_cpm_array.sum()and.min()/.max()` (including the axis= argument), so these are safe to use.

Global constraints

You may wonder if you are allowed to use functions like abs(),min(),max() because some solvers might not have support for it? The answer is yes you can use them, because they are global constraints.

In constraint solving, a global constraint is a function that expresses a relation between decision variables. There are two pathways when solving a model with global constraints: 1) the solver natively supports them, or 2) the constraint modelling library automatically decomposes the constraint into an equivalent set of simpler constraints.

A good example is the AllDifferent() global constraint that ensures all its arguments have distinct values. AllDifferent(x,y,z) can be decomposed into [x!=y, x!=z, y!=z]. For AllDifferent, the decomposition consists of n*(n-1) pairwise inequalities, which are simpler constraints that most solvers support.

However, a solver that has specialised datastructures for this constraint specifically does not need to create the decomposition. Furthermore, for AllDifferent solvers can implement specialised algorithms that can propagate strictly stronger than the decomposed constraints can.

Global constraints

A non-exhaustive list of global constraints that are available in CPMpy is: Xor(), AllDifferent(), AllDifferentExcept0(), Table(), Circuit(), Cumulative(), GlobalCardinalityCount().

For their meaning and more information on how to define your own global constraints, see the API documentation on global constraints. Global constraints can also be reified (e.g. used in an implication or equality constraint).

CPMpy will automatically decompose them if needed. If you want to see the decomposition yourself, you can call the decompose() function on them.

import cpmpy as cp
x = cp.intvar(1,4, shape=4, name="x")
b = cp.boolvar()
cp.Model(
 cp.AllDifferent(x),
 cp.AllDifferent(x).decompose(), # equivalent: [(x[0]) != (x[1]), (x[0]) != (x[2]), ...
 b.implies(cp.AllDifferent(x)),
 cp.Xor(b, cp.AllDifferent(x)), # etc...
)

decompose() returns two arguments, one that represents the constraints and an optional one that defines any new variables needed. This is technical, but important to make negation work, if you want to know more check the the API documentation on global constraints.

Numeric global constraints

Coming back to the Python-builtin functions min(),max(),abs(), these are a bit special because they have a numeric return type. In fact, constraint solvers typically implement a global constraint MinimumEq(args, var) that represents min(args) == var, so it combines a numeric function with a comparison, where it will ensure that the bounds of the expressions on both sides satisfy the comparison relation.

However, CPMpy also wishes to support the expressions min(xs) > v as well as v + min(xs) != 4 and other nested expressions.

In CPMpy we do this by instantiating min/max/abs as numeric global constraints. E.g. min([x,y,z]) becomes Minimum([x,y,z]) which inherits from GlobalFunction because it has a numeric return type. Our library will transform the constraint model, including arbitrarly nested expressions, such that the numeric global constraint is used in a comparison with a variable. Then, the solver will either support it, or we will call decompose_comparison() on the numeric global constraint, which will decompose e.g. min(xs) == v.

A non-exhaustive list of numeric global constraints that are available in CPMpy is: Minimum(), Maximum(), Count(), Element().

For their meaning and more information on how to define your own global constraints, see the API documentation on global functions.

import cpmpy as cp
x = cp.intvar(1,4, shape=4, name="x")
s = cp.SolverLookup.get("ortools")
print(s.transform(cp.min(x) + cp.max(x) - 5 > 2*cp.Count(x, 2)))
[(sum([IV5, IV6, -5])) > (IV4),
(min(x[0],x[1],x[2],x[3])) == (IV5), (max(x[0],x[1],x[2],x[3])) == (IV6),
(sum([2] * [IV3])) == (IV4),
(sum([BV0, BV1, BV2, BV3])) == (IV3),
(~BV0) -> (x[0] != 2), (BV0) -> (x[0] == 2),
(~BV1) -> (x[1] != 2), (BV1) -> (x[1] == 2),
(~BV2) -> (x[2] != 2), (BV2) -> (x[2] == 2),
(~BV3) -> (x[3] != 2), (BV3) -> (x[3] == 2)]

The Element numeric global constraint

The Element(Arr,Idx) global function enforces that the result equals Arr[Idx] with Arr an array of constants or variables (the first argument) and Idx an integer decision variable, representing the index into the array.

import cpmpy as cp

arr = cp.intvar(1,10, shape=4)
idx = cp.intvar(0,len(arr)-1) # indexing is offset 0

m = cp.Model(
 cp.AllDifferent(arr),
 arr[idx] == 2
)
m.solve()
print(f"arr: {arr.value()}, idx: {idx.value()}, val: {arr[idx].value()}")
example output -- arr: [2 1 3 4], idx: 0, val: 2

The arr[idx] works because arr is a CPMpy NDVarArray() and we overloaded the __getitem__() python function. It even supports multi-dimensional access, e.g. arr[idx1,idx2].

This does not work on NumPy arrays though, as they don’t know CPMpy. So you have to wrap the array in our cpm_array() or call Element() directly:

import numpy as np
import cpmpy as cp

arr = np.arange(4) # array([0, 1, 2, 3])
idx = cp.intvar(0,len(arr)) # indexing is offset 0

m = cp.Model()
#m += (arr[idx] == 2) # does not work, numpy does not know what to do
IndexError: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boolean arrays are valid indices

cparr = cp.cpm_array(arr) # wrap in CPMpy array
m += (cparr[idx] == 2) # works

m += (cp.Element(arr, idx) == 2) # also works, identical to above

m.solve()
print(f"arr: {arr.value()}, idx: {idx.value()}, val: {arr[idx].value()}")
arr: [0 1 2 3], idx: 2, val: 2

Objective functions

If a model has no objective function specified, then it is a satisfaction problem: the goal is to find out whether a solution, any solution, exists. When an objective function is added, this function needs to be minimized or maximized.

Any CPMpy expression can be added as objective function. Solvers are especially good in optimizing linear functions or the minimum/maximum of a set of expressions. Other (non-linear) expressions are supported too, just give it a try.

import cpmpy as cp
m = cp.Model()

Variables
b = cp.boolvar(name="b")
x = cp.intvar(1,10, shape=3, name="x")

Constraints
m += (x[0] == 1)
m += cp.AllDifferent(x)
m += b.implies(x[1] + x[2] > 5)

Objective function (optional)
m.maximize(cp.sum(x) + 100*b)

print(m)
if m.solve():
 print(x.value(), b.value())
else:
 print("No solution found.")

Solving a model

CPMpy can be used as a declarative modeling language: you create a Model(), add constraints and call solve() on it. See the example above.

The return value of solve() is a Boolean indicating whether a solution was found. So regardless of whether it was a satisfaction or optimisation problem or with a timeout, it returns true if ‘a’ solution has been found in the process.

To know the exact solver state and runtime after solve, call status(). In case of an optimisation problem, you can get the objective value of the solution with objective_value().

import cpmpy as cp
xs = cp.intvar(1,10, shape=3)
m = cp.Model(cp.AllDifferent(xs), maximize=cp.sum(xs))

hassol = m.solve()
print("Status:", m.status()) # Status: ExitStatus.OPTIMAL (0.03033301 seconds)
if hassol:
 print(m.objective_value(), xs.value()) # 27 [10 9 8]
else:
 print("No solution found.")

Finding all solutions

You can also conveniently use CPMpy to find all solutions using the solveAll() function:

import cpmpy as cp
x = cp.intvar(0, 3, shape=2)
m = cp.Model(x[0] > x[1])

n = m.solveAll()
print("Nr of solutions:", n) # Nr of solutions: 6

When using solveAll(), a solver will use an optimized native implementation behind the scenes when that exists.

It has a display=... argument that can be used to display expressions or as a callback, as well as the solution_limit=... argument to set a solution limit. It also accepts any named argument, like time_limit=..., that the underlying solver accepts.

n = m.solveAll(display=[x,cp.sum(x)], solution_limit=3)
[array([1, 0]), 1]
[array([2, 0]), 2]
[array([3, 0]), 3]

There is much more to say on enumerating solutions and the use of callbacks or blocking clauses. See the the detailed documentation on finding multiple solutions.

Debugging a model

If the solver is complaining about your model, then a good place to start debugging is to print the model you have created, or the individual constraints. If they look fine (e.g. no integers, or shorter or longer expressions then what you intended) and you don’t know which constraint specifically is causing the error, then you can feed the constraints incrementally to the solver you are using:

import cpmpy as cp

cons = [] # ... imagine a list of constraints
print(cons)

m = cp.Model(cons) # any model created
visually inspect that the constraints match what you wanted to express
e.g. if you wrote `all(x)` instead of `cp.all(x)` it will contain 'True' instead of the conjunction
print(m)

s = cp.SolverLookup.get("ortools")
feed the constraints one-by-one
for c in m.constraints:
 s += c # add the constraints incrementally until you hit the error

If that is not sufficient or you want to debug an unexpected (non)solution, have a look at our detailed Debugging guide.

Selecting a solver

The default solver is OR-Tools CP-SAT, an award winning constraint solver. But CPMpy supports multiple other solvers: a MIP solver (gurobi), SAT solvers (those in PySAT), the Z3 SMT solver, even a knowledge compiler (PySDD) and any CP solver supported by the text-based MiniZinc language.

See the full list of solvers known by CPMpy with:

import cpmpy as cp
cp.SolverLookup.solvernames()

On my system, with pysat and minizinc installed, this gives `[‘ortools’, ‘minizinc’, ‘minizinc:chuffed’, ‘minizinc:coin-bc’, …, ‘pysat:minicard’, ‘pysat:minisat22’, ‘pysat:minisat-gh’]

You can specify a solvername when calling solve() on a model:

import cpmpy as cp
x = cp.intvar(0,10, shape=3)
m = cp.Model(cp.sum(x) <= 5)
use named solver
m.solve(solver="minizinc:chuffed")

Note that for solvers other than “ortools”, you will need to install additional package(s). You can check if a solver, e.g. “minizinc”, is supported by calling cp.SolverLookup.get("gurobi") and it will raise a helpful error if it is not yet installed on your system. See the API documentation of the solver for detailed installation instructions.

Model versus solver interface

A Model() is a lazy container. It simply stores the constraints. Only when solve() is called will it instantiate a solver, and send the entire model to it at once. So m.solve("ortools") is equivalent to:

s = SolverLookup.get("ortools", m)
s.solve()

Solver interfaces allow more than the generic model interface, because, well, they can support solver-specific features. Such as solver-specific parameters, passing a previous solution to start from, incremental solving, unsat core extraction, solver-specific callbacks etc.

Importantly, the solver interface supports the same functions as the Model() object (for adding constraints, an objective, solve, solveAll, status, …). So if you want to make use of some features of a solver, simply replace m = Model() by m = SolverLookup.get("your-preferred-solvername") and your code remains valid. Below, we replace m by s for readability.

import cpmpy as cp
x = cp.intvar(0,10, shape=3)
s = cp.SolverLookup.get("ortools")
we are operating on the ortools interface here
s += (cp.sum(x) <= 5)
s.solve()
print(s.status())

On a technical note, remark that a solver object does not modify the Model object with which it is initialised. So adding constraints to the solver does not add them to that model, and calling s.solve() does not update the status of m.status(), only of s.status().

Setting solver parameters

Now lets use our solver-specific powers.
For example, with m a CPMpy Model(), you can do the following to make or-tools use 8 parallel cores and print search progress:

import cpmpy as cp
s = cp.SolverLookup.get("ortools", m)
we are operating on the ortools interface here
s.solve(num_search_workers=8, log_search_progress=True)

Modern CP-solvers support a variety of hyperparameters. (See the full list of OR-tools parameters [https://github.com/google/or-tools/blob/stable/ortools/sat/sat_parameters.proto] for example).
Using the solver interface, any parameter that the solver supports can be passed using the .solve() call.
These parameters will be posted to the native solver before solving the model.

s.solve(cp_model_probing_level = 2,
 linearization_level = 0,
 symmetry_level = 1)

See the API documentation of the solvers for information and links on the parameters supported. See our documentation page on solver parameters if you want to tune your hyperparameters automatically.

Accessing the underlying solver object

After solving, we can access the underlying solver object to retrieve some information about the solve.
For example in ortools we can find the number of search branches like this, expanding our previous example.

import cpmpy as cp
x = cp.intvar(0,10, shape=3)
s = cp.SolverLookup.get("ortools")
we are operating on the ortools interface here
s += (cp.sum(x) <= 5)
s.solve()
print(s.ort_solver.NumBranches())

Other solvers, like Minizinc might have other native objects stored.
You can see which solver native objects are initialized for each solver in the API documentation of the solver.
We can access the solver statistics from the mzn_result object like this:

import cpmpy as cp
x = cp.intvar(0,10, shape=3)
s = cp.SolverLookup.get("minizinc")
we are operating on the minizinc interface here
s += (cp.sum(x) <= 5)
s.solve()
print(s.mzn_result.statistics)
print(s.mzn_result.statistics['nodes']) #if we are only interested in the nb of search nodes

Incremental solving

It is important to realize that a CPMpy solver interface is eager. That means that when a CPMpy constraint is added to a solver object, CPMpy immediately translates it and posts the constraints to the underlying solver. That is why the debugging trick of posting it one-by-one works.

This has two potential benefits for incremental solving, whereby you add more constraints and variables inbetween solve calls:

	CPMpy only translates and posts each constraint once, even if the model is solved multiple times; and

	if the solver itself is incremental then it can reuse any information from call to call, as the state of the native solver object is kept between solver calls and can therefore rely on information derived during a previous solve call.

gs = SolverLookup.get("gurobi")

gs += sum(ivar) <= 5
gs.solve()

gs += sum(ivar) == 3
the underlying gurobi instance is reused, only the new constraint is added to it.
gurobi is an incremental solver and will look for solutions starting from the previous one.
gs.solve()

Technical note: OR-Tools its model representation is incremental but its solving itself is not (yet?). Gurobi and the PySAT solvers are fully incremental, as is Z3. The text-based MiniZinc language is not incremental.

Assumption-based solving

SAT and CP-SAT solvers oftentimes support solving under assumptions, which is also supported by their CPMpy interface.
Assumption variables are usefull for incremental solving when you want to activate/deactivate different subsets of constraints without copying (parts of) the model or removing constraints and re-solving.
By relying on the solver interface directly as in the previous section, the state of the solver is kept in between solve-calls.
Many explanation-generation algorithms (see cpmpy.tools.explain) make use of this feature to speed up the solving.

import cpmpy as cp

x = cp.intvar(1,5, shape=5, name="x")

c1 = cp.AllDifferent(x)
c2 = x[0] == cp.min(x)
c3 = x[-1] == 1 # this one makes it UNSAT

cp.Model([c1,c2,c3]).solve() # Will be UNSAT

s = cp.SolverLookup.get("exact") # OR-tools, PySAT and Exact support solving under assumptions
assump = cp.boolvar(shape=3, name="assump")
s += assump.implies([c1,c2,c3])

Underlying solver state will be kept inbetween solve-calls
s.solve(assumptions=assump[0,1]) # Will be SAT
s.solve(assumptions=assump[0,1,2]) # Will be UNSAT
s.solve(assumptions=assump[1,2]) # Will be SAT

Using solver-specific CPMpy features

We sometimes add solver-specific functions to the CPMpy interface, for convenient access. Two examples of this are solution_hint() and get_core() which is supported by the OR-Tools and PySAT solvers and interfaces. Other solvers may work differently and not have these concepts.

solution_hint() tells the solver that it could use these variable-values first during search, e.g. typically from a previous solution:

import cpmpy as cp
x = cp.intvar(0,10, shape=3)
s = cp.SolverLookup.get("ortools")
s += cp.sum(x) <= 5
we are operating on a ortools' interface here
s.solution_hint(x, [1,2,3])
s.solve()
print(x.value())

get_core() asks the solver for an unsatisfiable core, in case a solution did not exist and assumption variables were used. See the documentation on Unsat core extraction.

See the API documentation of the solvers to learn about their special functions.

Direct solver access

Some solvers implement more constraints then available in CPMpy. But CPMpy offers direct access to the underlying solver, so there are two ways to post such solver-specific constraints.

DirectConstraint

The DirectConstraint will directly call a function of the underlying solver, when the constraint is added to a CPMpy solver.

You provide the DirectConstraint with the name of the function you want to call, as well as the arguments:

import cpmpy as cp
iv = cp.intvar(1,9, shape=3)

s = cp.SolverLookup.get("ortools")
s += cp.AllDifferent(iv)
s += cp.DirectConstraint("AddAllDifferent", iv) # a DirectConstraint equivalent to the above for OR-Tools

This requires knowledge of the API of the underlying solver, as any function name that you give to it will be called. The only special thing that the DirectConstraint does, is automatically translate any CPMpy variable in the arguments to the native solver variable.

Note that any argument given will be checked for whether it needs to be mapped to a native solver variable. This may give errors on complex arguments, or be inefficient. You can tell the DirectConstraint not to scan for variables with the novar argument, for example:

import cpmpy as cp
trans_vars = cp.boolvar(shape=4, name="trans")

s = cp.SolverLookup.get("ortools")

trans_tabl = [# corresponds to regex 0* 1+ 0+
 (0, 0, 0),
 (0, 1, 1),
 (1, 1, 1),
 (1, 0, 2),
 (2, 0, 2)
]
s += cp.DirectConstraint("AddAutomaton", (trans_vars, 0, [2], trans_tabl),
 novar=[1, 2, 3]) # optional, what arguments not to scan for vars

A minimal example of the DirectConstraint for every supported solver is in the test suite [https://github.com/CPMpy/cpmpy/tree/master/tests/test_direct.py].

The DirectConstraint is a very powerful primitive to get the most out of specific solvers. See the following examples: nonogram_ortools.ipynb [https://github.com/CPMpy/cpmpy/tree/master/examples/nonogram_ortools.ipynb] which uses a helper function that generates automatons with DirectConstraints; vrp_ortools.py [https://github.com/CPMpy/cpmpy/tree/master/examples/vrp_ortools.ipynb] demonstrating ortools’ newly introduced multi-circuit global constraint through DirectConstraint; and pctsp_ortools.py [https://github.com/CPMpy/cpmpy/tree/master/examples/pctsp_ortools.ipynb] that uses a DirectConstraint to use OR-Tools circuit to post a sub-circuit constraint as needed for this price-collecting TSP variant.

Directly accessing the underlying solver

The DirectConstraint("AddAllDifferent", iv) is equivalent to the following code, which demonstrates that you can mix the use of CPMpy with calling the underlying solver directly:

import cpmpy as cp

iv = cp.intvar(1,9, shape=3)

s = cp.SolverLookup.get("ortools")

s += AllDifferent(iv) # the traditional way, equivalent to:
s.ort_model.AddAllDifferent(s.solver_vars(iv)) # directly calling the API, has to be with native variables

observe how we first map the CPMpy variables to native variables by calling s.solver_vars(), and then give these to the native solver API directly. This is in fact what happens behind the scenes when posting a DirectConstraint, or any CPMpy constraint.

While directly calling the solver offers a lot of freedom, it is a bit more cumbersome as you have to map the variables manually each time. Also, you no longer have a declarative model that you can pass along, print or inspect. In contrast, a DirectConstraint is a CPMpy expression so it can be part of a model like any other CPMpy constraint. Note that it can only be used as top-level (non-nested, non-reified) constraint.

Hyperparameter search across different parameters

Because CPMpy offers programmatic access to the solver API, hyperparameter search can be straightforwardly done with little overhead between the calls.

Built-in tuners

The tools directory contains a utility to efficiently search through the hyperparameter space defined by the solvers tunable_params.

Solver interfaces not providing the set of tunable parameters can still be tuned by using this utility and providing the parameter (values) yourself.

import cpmpy as cp
from cpmpy.tools import ParameterTuner

model = cp.Model(...)

tunables = {
 "search_branching":[0,1,2],
 "linearization_level":[0,1],
 'symmetry_level': [0,1,2]}
defaults = {
 "search_branching": 0,
 "linearization_level": 1,
 'symmetry_level': 2
}

tuner = ParameterTuner("ortools", model, tunables, defaults)
best_params = tuner.tune(max_tries=100)
best_runtime = tuner.best_runtime

This utlity is based on the SMBO framework and speeds up the search by starting from the default configuration, and implementing adaptive capping meaning that the best runtime is used as timeout to avoid wasting time.

The parameter tuner is based on the following publication:

Ignace Bleukx, Senne Berden, Lize Coenen, Nicholas Decleyre, Tias Guns (2022). Model-Based Algorithm
Configuration with Adaptive Capping and Prior Distributions. In: Schaus, P. (eds) Integration of Constraint
Programming, Artificial Intelligence, and Operations Research. CPAIOR 2022. Lecture Notes in Computer Science,
vol 13292. Springer, Cham. https://doi.org/10.1007/978-3-031-08011-1_6

Another built-in tuner is GridSearchTuner, which does random gridsearch (with adaptive capping).

External tuners

You can also use external hyperparameter optimisation libraries, such as hyperopt:

from hyperopt import tpe, hp, fmin
import cpmpy as cp

model = Model(...)

def time_solver(model, solver, param_dict):
 s = cp.SolverLookup.get(solver, model)
 s.solve(**param_dict)
 return s.status().runtime

space = {
 'cp_model_probing_level': hp.choice('cp_model_probing_level', [0, 1, 2, 3]),
 'linearization_level': hp.choice('linearization_level', [0, 1, 2]),
 'symmetry_level': hp.choice('symmetry_level', [0, 1, 2]),
 'search_branching': hp.choice('search_branching', [0, 1, 2]),
}

best = fmin(
 fn=lambda p: time_solver(model, "ortools", p), # Objective Function to optimize
 space=space, # Hyperparameter's Search Space
 algo=tpe.suggest, # Optimization algorithm (representative TPE)
 max_evals=10 # Number of optimization attempts
)
print(best)
time_solver(model, "ortools", best)

How to debug

You get an error, or no error, but also no (correct) solution… Annoying, you have a bug.

The bug can be situated in one of three layers:

	your problem specification

	the CPMpy library

	the solver

coincidentally, they are ordered from most likely to least likely. So let’s start at the bottom.

If you don’t have a bug yet, but are curious, here is some general advise from expert modeller Håkan Kjellerstrand [http://www.hakank.org/]:

	Test the model early and often. This makes it easier to detect problems in the model.

	When a model is not working, try to comment out all the constraints and then activate them again one by one to test which constraint is the culprit.

	Check the domains (see lower). The domains should be as small as possible, but not smaller. If they are too large it can take a lot of time to get a solution. If they are too small, then there will be no solution.

Debugging the solver

If you get an error and have difficulty understanding it, try searching on the internet if other users have had the same.

If you don’t find it, or if the solver runs fine and without error, but you don’t get the answer you expect; then try swapping out the solver for another solver and see what gives…

Replace model.solve() by model.solve(solver='minizinc') for example. You do need to install MiniZinc and minizinc-python first though.

Either you have the same output, and it is not the solver’s fault, or you have a different output and you actually found one of these rare solver bugs. Report on the bugtracker of the solver, or on the CPMpy github page where we will help you file a bug ‘upstream’ (or maybe even work around it in CPMpy).

Debugging a modeling error

You get an error when you create an expression? Then you are probably writing it wrongly. Check the documentation and the running examples for similar examples of what you wish to express.

Here are a few quirks in Python/CPMpy:

	when using & and |, make sure to always put the subexpressions in brackets. E.g. (x == 1) & (y == 0) instead of x == 1 & y == 0. The latter wont work, because Python will unfortunately think you meant x == (1 & (y == 0)).

	you can write vars[other_var] but you can’t write non_var_list[a_var]. That is because the vars list knows CPMpy, and the non_var_list does not. Wrap it: non_var_list = cpm_array(non_var_list) first, or write Element(non_var_list, a_var) instead.

	only write sum(v) on lists, don’t write it if v is a matrix or tensor, as you will get a list in response. Instead, use NumPy’s v.sum() instead.

Try printing the expression print(e) or subexpressions, and check that the output matches what you wish to express. Decompose the expression and try printing the individual components and their piecewice composition to see what works and when it starts to break.

If you don’t find it, report it on the CPMpy github Issues page and we’ll help you (and maybe even extend the above list of quirks).

Debugging a solve() error

You get an error either from CPMpy (e.g. the flattening, or the solver interface) or the solver itself is saying the model is invalid. This may be because you have modelled something impossible, or because you have a corner case that CPMpy does not yet capture.

If you have a model that fails in this way, try the following code snippet to see what constraint is causing the error:

model = ... # your code, a `Model()`

for c in model.constraints:
 print("Trying",c)
 Model(c).solve()

The last constraint printed before the exception is the curlpit… Please report on Github. We want to catch corner cases in CPMpy, even if it is a solver limitation, so please report on the CPMpy github Issues page.

Or maybe, you got one of CPMpy’s NotImplementedErrors. Share your use case with us on Github and we will implement it. Or implemented it yourself first, that is also very welcome ;)

Debugging an UNSATisfiable model

First, print the model:

print(model)

and check that the output matches what you want to express. Do you see anything unusual? Start there, see why the expression is not what you intended to express, as described in ‘Debugging a modeling error’.

If that does not help, try printing the ‘transformed’ constraints, the way that the solver actually sees them, including decompositions and rewrites:

s = SolverLookup.get("ortools") # or whatever solver you are using
print(s.transform(model.constraints))

Note that you can also print individual expressions like this, e.g. print(s.transform(expression)) which helps to zoom in on the curlpit.

If you want to know about the variable domains as well, to see whether something is wrong there, you can do so as follows:

s = SolverLookup.get("ortools") # or whatever solver you are using
ct = s.transform(model.constraints)
from cpmpy.transformations.get_variables import print_variables
print_variables(ct)
print(ct)

Printing the objective as the solver sees it requires you to look into the solver interface code of that solver. However, the following is a good first check that can already reveal potentially problematic things:

s = SolverLookup.get("ortools") # or whatever solver you are using
from cpmpy.transformations.flatten_model import flatten_objective
(obj_var, obj_expr) = flatten_objective(model.objective)
print(f"Optimizing {obj_var} subject to", s.transform(obj_expr))

Automatically minimising the UNSAT program

If the above is unwieldy because your constraint problem is too large, then consider automatically reducing it to a ‘Minimal Unsatisfiable Subset’ (MUS).

This is now part of our standard tools, that you can use as follows:

from cpmpy.tools import mus

x = boolvar(shape=3, name="x")
model = Model(
 x[0],
 x[0] | x[1],
 x[2].implies(x[1]),
 ~x[0],
)

unsat_cons = mus(model.constraints)

With this smaller set of constraints, repeat the visual inspection steps above.

(Note that for an UNSAT problem there can be many MUSes, the examples/advanced/ folder has the MARCO algorithm that can enumerate all MSS/MUSes.)

Correcting an UNSAT program

As many MUSes (=conflicts) may exist in the problem, resolving one of them does not necessarily make the model satisfiable.

In order to find which constraints are to be corrected, you can use the tools.mcs tool which computes a ‘Minimal Correction Subset’ (MCS).
By removing these contraints (or altering them), the model will become satisfiable.

Note that a Minimal Correction Subset is the complement of a Maximal Satisfiable Subset (MSS).
MSSes can be calculated optimally using a Max-CSP (resp. Max-SAT) formuation.
By weighting each of the constraints, you can define some preferences on which constraints should be satisfied over others.

from cpmpy.tools import mcs, mss
import cpmpy as cp

x = cp.boolvar(shape=3, name="x")
model = cp.Model(
 x[0],
 x[0] | x[1],
 x[2].implies(x[1]),
 ~x[0],
)

sat_cons = mss(model.constraints) # x[0] or x[1], x[2] -> x[1], ~x[0]
cons_to_remove = (mcs(model.constraints)) # x[0]

Debugging a satisfiable model, that does not contain an expected solution

We will ignore the (possible) objective function here and focus on the feasibility part.
Actually, in case of an optimisation problem where you know a certain value is attainable, you can add objective == known_value as constraint and proceed similarly.

Add the solution that you know should be a feasible solution as a constraint:
model.add((x == 1) & (y == 2) & (z == 3)) # yes, brackets around each!

You now have an UNSAT program! That means you can follow the steps above to better understand and correct it.

Debugging a satisfiable model, which returns an impossible solution

This one is most annoying… Double check the printing of the model for oddities, also visually inspect the flat model. Try enumerating all solutions and look for an unwanted pattern in the solutions. Try a different solver.

Try generating an explanation sequence for the solution… this requires a satisfaction problem, so remove the objective function or add a constraint that constraints the objective function to the value attained by the impossible solution.

As to generating the explanation sequence, check out our advanced example on stepwise OCUS explanations [https://github.com/CPMpy/cpmpy/blob/master/examples/advanced/ocus_explanations.py]

Obtaining multiple solutions

CPMpy models and solvers support the solveAll() function. It efficiently computes all solutions and optionally displays them. Alternatively, you can manually add blocking clauses as explained in the second half of this page.

When using solveAll(), a solver will use an optimized native implementation behind the scenes when that exists.

It has two special named optional arguments:

	display=…: accepts a CPMpy expression, a list of CPMpy expressions or a callback function that will be called on every solution found (default: None)

	solution_limit=…: stop after this many solutions (default: None)

It also accepts named argument time_limit=... and any other keyword argument is passed on to the solver just like solve() does.

It returns the number of solutions found.

solveAll() examples

In the following examples, we assume:

from cpmpy import *
x = intvar(0, 3, shape=2)
m = Model(x[0] > x[1])

Just return the number of solutions (here: 6)

n = m.solveAll()
print("Nr of solutions:", n)

With a solution limit: e.g. find up to 2 solutions

n = m.solveAll(solution_limit=2)
print("Nr of solutions:", n)

Find all solutions, and print the value of x for each solution found.

n = m.solveAll(display=x)

display Can also take lists of arbitrary CPMpy expressions:

n = m.solveAll(display=[x,sum(x)])

Perhaps most powerful is the use of callbacks, which allows for rich printing, solution storing, dynamic stopping and more. You can use any variable name from the outer scope here (it is a closure). That does mean that you have to call var.value() each time to get the value(s) of this particular solution.

Rich printing with a callback function:

def myprint():
 xval = x.value()
 print(f"x={xval}, sum(x)={sum(xval)}")
n = m.solveAll(display=myprint) # callback function without brackets

Also callback with an anonymous lambda function possible:

n = m.solveAll(display=lambda: print(f"x={x.value()} sum(x)={sum(x.value())}")

See the set_game.ipynb [https://github.com/CPMpy/cpmpy/blob/master/examples/set_game.ipynb] for an example of how we use it as a callback to call a plotting function, to plot all the solutions as they are found.

A callback is also the (only) way to go if you want to store information about all the found solutions (only recommended for small numbers of solutions).

solutions = []
def collect():
 print(x.value())
 solutions.append(list(x.value()))
n = m.solveAll(display=collect, solution_limit=1000) # callback function without brackets
print(f"Stored {len(solutions)} solutions.")

Solution enumeration with blocking clauses

The MiniSearch[1] paper promoted a small, high-level domain-specific language for specifying the search for multiple solutions with blocking clauses.

This approach makes use of the incremental nature of the solver interfaces. It is hence much more efficient (less overhead) to do this on a solver object rather then a generic model object.

Here is an example of standard solution enumeration, note that this will be much slower than solveAll().

from cpmpy import *

x = intvar(0,3, shape=2)
m = Model(x[0] > x[1])
s = SolverLookup.get("ortools", m) # faster on a solver interface directly

while s.solve():
 print(x.value())
 # block this solution from being valid
 s += ~all(x == x.value())

In case of multiple variables you should put them in one long python-native list, as such:

x = intvar(0,3, shape=2)
b = boolvar()
m = Model(b.implies(x[0] > x[1]))
s = SolverLookup.get("ortools", m) # faster on a solver interface directly

while s.solve():
 print(x.value(), b.value())
 allvars = list(x)+[b]
 # block this solution from being valid
 s += ~all(v == v.value() for v in allvars)

Diverse solution search

A better, more complex example of repeated solving is when searching for diverse solutions.

The goal is to iteratively find solutions that are as diverse as possible with the previous solutions. Many definitions of diversity between solutions exist. We can for example measure the difference between two solutions with the Hamming distance (comparing the number of different values) or the Euclidian distance (compare the absolute difference in value for the variables).

Here is the example code for enumerating K diverse solutions with Hamming distance, which overwrites the objective function in each iteration:

Diverse solutions, Hamming distance (inequality)
x = boolvar(shape=6)
m = Model(sum(x) == 2)
s = SolverLookup.get("ortools", m) # faster on a solver interface directly

K = 3
store = []
while len(store) < 3 and s.solve():
 print(len(store), ":", x.value())
 store.append(x.value())
 # Hamming dist: nr of different elements
 s.maximize(sum([sum(x != sol) for sol in store]))

As a fun fact, observe how x != sol works, even though one is a vector of Boolean variables and sol is Numpy array. However, both have the same length, so this is automatically translated into a pairwise comparison constraint by CPMpy. These numpy-style vectorized operations mean we have to write much less loops while modelling.

To use the Euclidian distance, only the last line needs to be changed. We again use vectorized operations and obtain succinct models. The creation of intermediate variables (with appropriate domains) is done by CPMpy behind the scenes.

Euclidian distance: absolute difference in value
s.maximize(sum([sum(abs(np.add(x, -sol))) for sol in store]))

Mixing native callbacks with CPMpy

CPMpy passes arguments to solve() directly to the underlying solver object, so you can actually define your own native callbacks and pass them to the solve call.

The following is an example of that, which is actually how the native solveAll() for ortools is implemented. You could give it your own custom implemented callback cb too.

from cpmpy import *
from cpmpy.solvers import CPM_ortools
from cpmpy.solvers.ortools import OrtSolutionPrinter

x = intvar(0,3, shape=2)
m = Model(x[0] > x[1])

s = SolverLookup.get('ortools', m)
cb = OrtSolutionPrinter()
s.solve(enumerate_all_solutions=True, solution_callback=cb)
print("Nr of solutions:",cb.solution_count())

UnSAT core extraction with assumption variables

When a model is unsatisfiable, it can be desirable to get a better idea of which Boolean variables make it unsatisfiable. Commonly, these Boolean variables are ‘switches’ that turn constraints on, hence such Boolean variables can be used to get a better idea of which constraints make the model unsatisfiable.

In the SATisfiability literature, the Boolean variables of interests are called assumption variables and the solver will assume they are true. The subset of these variables that, when true, make the model unsatisfiable is called an unsatisfiable core.

Lazy Clause Generation solvers, like or-tools, are built on SAT solvers and hence can inherit the ability to define assumption variables and extract an unsatisfiable core.

Since version 8.2, or-tools supports declaring assumption variables, and extracting an unsat core. We also implement this functionality in CPMpy, using PySAT-like s.solve(assumptions=[...]) and s.get_core():

from cpmpy import *
from cpmpy.solvers import CPM_ortools

bv = boolvar(shape=3)
iv = intvar(0,9, shape=3)

circular 'bigger then', UNSAT
m = Model(
 bv[0].implies(iv[0] > iv[1]),
 bv[1].implies(iv[1] > iv[2]),
 bv[2].implies(iv[2] > iv[0])
)

s = CPM_ortools(m)
print(s.solve(assumptions=bv))
print(s.status())
print("core:", s.get_core())
print(bv.value())

This opens the door to more advanced use cases, such as Minimal Unsatisfiable Subsets (MUS) and QuickXplain-like tools to help debugging.

In our tools we implemented a simple MUS deletion based algorithm, using assumption variables.

from cpmpy.tools import mus

print(mus(m.constraints))

We welcome any additional examples that use CPMpy in this way!! Here is one example: the MARCO algorithm for enumerating all MUS/MSSes [http://github.com/tias/cppy/tree/master/examples/advanced/marco_musmss_enumeration.py]. Here is another: a stepwise explanation algorithm [https://github.com/CPMpy/cpmpy/blob/master/examples/advanced/ocus_explanations.py] for SAT problems (implicit hitting-set based)

One OR-TOOLS specific caveat is that this particular (default) solver its Python interface is by design stateless. That means that, unlike in PySAT, calling s.solve(assumptions=bv) twice for a different bv array does NOT REUSE anything from the previous run: no warm-starting, no learnt clauses that are kept, no incrementality, so there will be some pre-processing overhead. If you know of another CP solver with a (Python) assumption interface that is incremental, let us know!!

A final-final note is that you can manually warm-start or-tools with a previously found solution with s.solution_hint(); see also the MARCO code linked above.

Developer guide

CPMpy is an open source project and we are happy for you to read and change the code as you see fit.

This page introduces how to get started on developing on CPMpy itself, with a focus on sharing these changes back with us for inclusion.

Setting up your development environment

The easiest is to use the pip to do an ‘editable install’ of your local CPMpy folder.

pip install --editable .

With that, any change you do there (including checking out different branches) is automatically used wherever you use CPMpy on your system.

Running the test suite

We only accept pull requests that pass all the tests. In general, you want to know if your changes screwed up another part. From your local CPMpy folder, execute:

python -m pytest tests/

This will run all tests in our tests/ folder.

You can also run an individual test, as such (e.g. when wanting to test a new solver):

python -m pytest tests/test_solvers.py

Code structure

	tests/ contains the tests

	docs/ contains the docs. Any change there is automatically updated, with some delay, on https://cpmpy.readthedocs.io/

	examples/ our examples, always happy to include more

	cpmpy/ the python module that you install when doing pip install cpmpy

The module is structured as such:

	model.py contains the omnipresent Model() container

	expressions/ Classes and functions that represent and create expressions (constraints and objectives)

	solvers/ CPMpy interfaces to (the Python API interface of) solvers

	transformations/ Methods to transform CPMpy expressions in other CPMpy expressions

	tools/ Set of independent tools that users might appreciate.

The typical flow in which these submodules are used when using CPMpy is: the user creates expressions which they put into a model object. This is then given to a solver object to solve, which will first transform the expressions into expressions that it supports, which it then posts to the Python API interface of that particular solver.

Tools are not part of the core of CPMpy. They are additional tools that use CPMpy, e.g. for debugging, parameter tuning etc.

Github practices

When filing a bug, please add a small case that allows us to reproduce it. If the testcase is confidential, mail Tias directly.

Only documentation changes can be directly applied on the master branch. All other changes should be submitted as a pull request.

When submitting a pull request, make sure it passes all tests.

When fixing a bug, you should also add a test that checks we don’t break it again in the future (typically, the case from the bugreport).

We are happy to do code reviews and discuss good ways to fix something or add a new feature. So do not hesitate to create a pull request for work-in-progress code. In fact, almost all pull requests go through at least 1 revision iteration.

Adding a new solver

Any solver that has a Python interface can be added as a solver to CPMpy. See the bottom of this page for tips in case the/your solver does not have a Python interface yet.

To add your solver to CPMpy, you should copy cpmpy/solvers/TEMPLATE.py [https://github.com/CPMpy/cpmpy/blob/master/cpmpy/solvers/TEMPLATE.py] directory, rename it to your solver name and start filling in the template. You can also look at how it is done for other solvers, they all follow the template.

Implementing the template consists of the following parts:

	supported() where you check if the solver package is installed. Never include the solver python package at the top-level of the file, CPMpy has to work even if a user did not install your solver package.

	__init__() where you initialize the underlying solver object

	solver_var() where you create new solver variables and map them to CPMpy decision variables

	solve() where you call the solver, get the status and runtime, and reverse-map the variable values after solving

	objective() if your solver supports optimisation

	transform() where you call the necessary transformations in cpmpy.transformations to transform CPMpy expressions to those that the solver supports

	__add__() where you call transform and map the resulting CPMpy expressions that the solver supports, to API function calls on the underlying solver

	solveAll() optionally, if the solver natively supports solution enumeration

Transformations and posting constraints

CPMpy solver interfaces are eager, meaning that any CPMpy expression given to it (through __add__()) is immediately transformed (throught transform()) and then posted to the solver.

CPMpy is designed to separate transforming arbitrary CPMpy expressions to constraints the solver supports, from actually posting the supported constraints directly to the solver.

For example, a SAT solver only accepts clauses (disjunctions) over Boolean variables as constraints. So, its transform() method has the challenge of mapping an arbitrary CPMpy expression to CPMpy ‘or’ expressions. This is exactly the task of a constraint modelling language like CPMpy, and we implement it through multiple solver-independent transformation functions in the cpmpy/transformations/ directory that can achieve that and more. You hence only need to chain the right transformations in the solver’s transform() method. It is best to look at a solver accepting a similar input, to see what transformations (and in what order) that one uses.

The __add__() method will first call this transform(). This will return a list of CPMpy ‘or’ expression over decision variables. It then only has to iterate over those and call the solver its native API to create such clauses. All other constraints may not be directly supported by the solver, and can hence be rejected.

So for any solver you wish to add, chances are that most of the transformations you need are already implemented. Any solver can use any transformation in any order that the transformations allow. If you need additional transformations, or want to know how they work, read on.

Stateless transformation functions

Because CPMpy solver interfaces transform and post constraints eagerly, they can be used incremental, meaning that you can add some constraints, call solve() add some more constraints and solve again. If the underlying solver is also incremental, it will reuse knowledge of the previous solve call to speed up this solve call.

The way that CPMpy succeeds to be an incremental modeling language, is by making all transformation functions stateless. Every transformation function is a python function that maps a (list of) CPMpy expressions to (a list of) equivalent CPMpy expressions. Transformations are not classes, they do not store state, they do not know (or care) what model a constraint belongs to. They take expressions as input and compute expressions as output. That means they can be called over and over again, and chained in any combination or order.

That also makes them modular, and any solver can use any combination of transformations that it needs. We continue to add and improve the transformations, and we are happy to discuss transformations you are missing, or variants of existing transformations that can be refined.

Most transformations do not need any state, they just do a bit of rewriting. Some transformations do, for example in the case of common subexpression elimination. In that case, the solver interface (you who are reading this), should store a dictionary in your solver interface class, and pass that as (optional) argument to the transformation function. The transformation function will read and write to that dictionary as it needs, while still remaining stateless on its own. Each transformation function documents when it supports an optional state dictionary, see all available transformations in cpmpy/transformations/.

What is a good Python interface for a solver?

A light-weight, functional API is what is most convenient from the CPMpy perspective, as well as in terms of setting up the Python-C++ bindings (or C, or whatever language the solver is written in).

With functional we mean that the API interface is for example a single class that has functions for adding variables, constraints and solve actions that it supports.

What we mean with light-weight is that it has none or few custom data-structures exposed at the Python level. That means that the arguments and return types of the API consist mostly of standard integers/strings/lists.

Here is fictional pseudo-code of such an API, which is heavily inspired on the OR-Tools CP-SAT interface:

class SolverX {
 private Smth real_solver;

 // constructor
 void SolverX() {
 real_solver = ...; // internal solver object, not exported to Python
 }

 // managing variables
 str addBoolVar(str name); // returns unique variable ID (can also be a light-weight struct)
 str addIntVar(int lb, int ub, str name): // returns unique variable ID

 int getVarValue(str varID); // obtaining the value of a variable after solve

 // adding constraints
 void postAnd(vector<str> varIDs);
 void postAndImplied(str boolID, vector<str> varIDs); // bool implies and(vars)
 void postOr(vector<str> varIDs);
 void postOrImplied(str boolID, vector<str> varIDs);
 void postAllDifferent(vector<str> varIDs);
 void postSum(vector<str> varIds, str Operator, str varID);
 void postSum(vector<str> varIds, str Operator, int const);
 // I think OR-Tools actually creates a map (unique ID) for both variables and constants, so they can be used in the same expression
 void postWeightedSum(vector<str> varIds, vector<int> weights, str Operator, str varID);
 ...

 // adding objective
 void setObjective(str varID, bool is_minimize);
 void setObjectiveSum(vector<str> varID, bool is_minimize);
 void setObjectiveWeightedSum(vector<str> varID, vector<int> weights, bool is_minimize);
 ...

 // solving
 int solve(bool param1, int param2, str param3, ...); // return-value represents return state (opt, sat, unsat, error, ...)
 ...
}

If you have such a C++ API, then there exist automatic python packages that can make Python bindings, such as CPPYY [https://cppyy.readthedocs.io/en/latest/].

We have not done this ourselves yet, so get in touch to share your experience and advice!

Testing your solver

The CPMpy package provides a large testsuite on which newly added solvers can be tested.
Note that for this testsuite to work, you need to add your solver to the SolverLookup utility.
This is done by adding an import statement in /solvers/__init__.py and adding an entry in the list of solvers in /solvers/utils.py.

To run the testsuite on your solver, go to /tests/test_constraints.py and set SOLVERNAMES to the name of your solver. By running the file, every constraint allowed by the Flat Normal Form will be generated and posted to your solver interface.
As not every solver should support all possible constraints, you can exclude some using the EXCLUDE_GLOBAL, EXCLUDE_OPERATORS and EXCLUDE_IMPL dictionaries.
After posting the constraint, the answer of your solver is checked so you will both be able to monitor when your interface crashes or when a translation to the solver is incorrect.

Tunable hyperparameters

CPMpy offers a tool for searching the best hyperparameter configuration for a given model on a solver (see corresponding documentation).
Solver wanting to support this tool should add the following attributes to their solver interface: tunable_params and default_params (see ortools [https://github.com/CPMpy/cpmpy/blob/11ae35b22357ad9b8d6f47317df2c236c3ef5997/cpmpy/solvers/ortools.py#L473] for an example).

Expressions (cpmpy.expressions)

Classes and functions that represent and create expressions (constraints and objectives)

List of submodules

	variables

	Integer and Boolean decision variables (as n-dimensional numpy objects)

	core

	The Expression superclass and common subclasses Expression and Operator.

	globalconstraints

	Global constraints conveniently express non-primitive constraints.

	globalfunctions

	Using global functions

	python_builtins

	Overwrites a number of python built-ins, so that they work over variables as expected.

	utils

	Internal utilities for expression handling.

Model (cpmpy.Model)

The Model class is a lazy container for constraints and an objective function.

It is lazy in that it only stores the constraints and objective that are added
to it. Processing only starts when solve() is called, and this does not modify
the constraints or objective stored in the model.

A model can be solved multiple times, and constraints can be added to it inbetween
solve calls.

See the examples for basic usage, which involves:

	creation, e.g. m = Model(cons, minimize=obj)

	solving, e.g. m.solve()

	optionally, checking status/runtime, e.g. m.status()

List of classes

	Model

	CPMpy Model object, contains the constraint and objective expressions

	
class cpmpy.model.Model(*args, minimize=None, maximize=None)

	CPMpy Model object, contains the constraint and objective expressions

	
copy()

	Makes a shallow copy of the model.
Constraints and variables are shared among the original and copied model.

	
static from_file(fname)

	Reads a Model instance from a binary pickled file

	Returns

	an object of :class: Model

	
maximize(expr)

	Maximize the given objective function

maximize() can be called multiple times, only the last one is stored

	
minimize(expr)

	Minimize the given objective function

minimize() can be called multiple times, only the last one is stored

	
objective(expr, minimize)

	Post the given expression to the solver as objective to minimize/maximize

	expr: Expression, the CPMpy expression that represents the objective function

	minimize: Bool, whether it is a minimization problem (True) or maximization problem (False)

‘objective()’ can be called multiple times, only the last one is stored

	
objective_value()

	
Returns the value of the objective function of the latste solver run on this model

	Returns

	an integer or ‘None’ if it is not run, or a satisfaction problem

	
solve(solver=None, time_limit=None)

	Send the model to a solver and get the result

	Parameters

	
	solver – name of a solver to use. Run SolverLookup.solvernames() to find out the valid solver names on your system. (default: None = first available solver)

	time_limit (int or float) – optional, time limit in seconds

	Returns

	Bool: the computed output:
- True if a solution is found (not necessarily optimal, e.g. could be after timeout)
- False if no solution is found

	
solveAll(solver=None, display=None, time_limit=None, solution_limit=None)

	Compute all solutions and optionally display the solutions.

Delegated to the solver, who might implement this efficiently

	Arguments:
	
	
	display: either a list of CPMpy expressions, OR a callback function, called with the variables after value-mapping
	default/None: nothing displayed

	solution_limit: stop after this many solutions (default: None)

Returns: number of solutions found

	
status()

	
Returns the status of the latest solver run on this model

Status information includes exit status (optimality) and runtime.

	Returns

	an object of SolverStatus

	
to_file(fname)

	Serializes this model to a .pickle format

	Param

	fname: Filename of the resulting serialized model

Solver interfaces (cpmpy.solvers)

CPMpy interfaces to (the Python API interface of) solvers

Solvers typically use some of the generic transformations in
transformations as well as specific reformulations to map the
CPMpy expression to the solver’s Python API

List of submodules

	ortools

	Interface to ortools' CP-SAT Python API

	minizinc

	Interface to MiniZinc's Python API

	pysat

	Interface to PySAT's API

	gurobi

	Interface to the python 'gurobi' package

	pysdd

	Interface to PySDD's API

	z3

	Interface to z3's API

	exact

	Interface to Exact

	utils

	Utilities for handling solvers

List of classes

	CPM_ortools

	Interface to the python 'ortools' CP-SAT API

	CPM_minizinc

	Interface to MiniZinc's Python API

	CPM_pysat

	Interface to PySAT's API

	CPM_gurobi

	Interface to Gurobi's API

	CPM_pysdd

	Interface to pysdd's API

	CPM_z3

	Interface to z3's API

	CPM_exact

	Interface to the Python interface of Exact

List of functions

	param_combinations

	Recursively yield all combinations of param values

Expression transformations (cpmpy.transformations)

Methods to transform CPMpy expressions in other CPMpy expressions

Input and output are always CPMpy expressions, so transformations can
be chained and called multiple times, as needed.

A transformation can not modify expressions in place but in that case
should create and return new expression objects. In this way, the
expressions prior to the transformation remain intact, and could be
used for other purposes too.

List of submodules

	flatten_model

	Flattening a model (or individual constraints) into 'flat normal form'.

	get_variables

	Returns an list of all variables in the model or expressions

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cpmpy	

 	
 	
 cpmpy.expressions	

 	
 	
 cpmpy.expressions.core	

 	
 	
 cpmpy.expressions.globalconstraints	

 	
 	
 cpmpy.expressions.python_builtins	

 	
 	
 cpmpy.expressions.utils	

 	
 	
 cpmpy.expressions.variables	

 	
 	
 cpmpy.model	

 	
 	
 cpmpy.solvers	

 	
 	
 cpmpy.solvers.exact	

 	
 	
 cpmpy.solvers.gurobi	

 	
 	
 cpmpy.solvers.minizinc	

 	
 	
 cpmpy.solvers.ortools	

 	
 	
 cpmpy.solvers.pysat	

 	
 	
 cpmpy.solvers.pysdd	

 	
 	
 cpmpy.solvers.utils	

 	
 	
 cpmpy.solvers.z3	

 	
 	
 cpmpy.transformations	

 	
 	
 cpmpy.transformations.flatten_model	

 	
 	
 cpmpy.transformations.get_variables	

 	
 	
 cpmpy.transformations.linearize	

 	
 	
 cpmpy.transformations.reification	

 	
 	
 cpmpy.transformations.to_cnf	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W
 | X

A

 	
 	all() (cpmpy.expressions.variables.NDVarArray method)

 	(in module cpmpy.expressions.python_builtins)

 	all_pairs() (in module cpmpy.expressions.utils)

 	AllDifferent (class in cpmpy.expressions.globalconstraints)

 	alldifferent() (in module cpmpy.expressions.globalconstraints)

 	AllDifferentExcept0 (class in cpmpy.expressions.globalconstraints)

 	AllEqual (class in cpmpy.expressions.globalconstraints)

 	allequal() (in module cpmpy.expressions.globalconstraints)

 	allowed (cpmpy.expressions.core.Comparison attribute)

 	(cpmpy.expressions.core.Operator attribute)

 	
 	any() (cpmpy.expressions.variables.NDVarArray method)

 	(in module cpmpy.expressions.python_builtins)

 	argmax() (cpmpy.expressions.variables.NDVarArray method)

 	argmin() (cpmpy.expressions.variables.NDVarArray method)

 	argpartition() (cpmpy.expressions.variables.NDVarArray method)

 	args (cpmpy.expressions.variables.NullShapeError attribute)

 	argsort() (cpmpy.expressions.variables.NDVarArray method)

 	argval() (in module cpmpy.expressions.utils)

 	astype() (cpmpy.expressions.variables.NDVarArray method)

B

 	
 	base (cpmpy.expressions.variables.NDVarArray attribute)

 	base_solvers() (cpmpy.solvers.utils.SolverLookup static method)

 	BoolVal (class in cpmpy.expressions.core)

 	
 	BoolVar() (in module cpmpy.expressions.variables)

 	boolvar() (in module cpmpy.expressions.variables)

 	byteswap() (cpmpy.expressions.variables.NDVarArray method)

C

 	
 	callSolver() (cpmpy.expressions.globalconstraints.DirectConstraint method)

 	canonical_comparison() (in module cpmpy.transformations.linearize)

 	choose() (cpmpy.expressions.variables.NDVarArray method)

 	Circuit (class in cpmpy.expressions.globalconstraints)

 	circuit() (in module cpmpy.expressions.globalconstraints)

 	clear() (cpmpy.expressions.variables.NDVarArray method)

 	(cpmpy.expressions.variables.NegBoolView method)

 	clip() (cpmpy.expressions.variables.NDVarArray method)

 	Comparison (class in cpmpy.expressions.core)

 	compress() (cpmpy.expressions.variables.NDVarArray method)

 	conj() (cpmpy.expressions.variables.NDVarArray method)

 	conjugate() (cpmpy.expressions.variables.NDVarArray method)

 	copy() (cpmpy.expressions.variables.NDVarArray method)

 	(cpmpy.model.Model method)

 	counter (cpmpy.expressions.variables.NegBoolView attribute)

 	cparray() (in module cpmpy.expressions.variables)

 	cpm_array() (in module cpmpy.expressions.variables)

 	CPM_exact (class in cpmpy.solvers.exact)

 	CPM_gurobi (class in cpmpy.solvers.gurobi)

 	CPM_minizinc (class in cpmpy.solvers.minizinc)

 	CPM_ortools (class in cpmpy.solvers.ortools)

 	CPM_pysat (class in cpmpy.solvers.pysat)

 	CPM_pysdd (class in cpmpy.solvers.pysdd)

 	CPM_z3 (class in cpmpy.solvers.z3)

 	
 cpmpy.expressions

 	module

 	
 cpmpy.expressions.core

 	module

 	
 cpmpy.expressions.globalconstraints

 	module

 	
 cpmpy.expressions.python_builtins

 	module

 	
 cpmpy.expressions.utils

 	module

 	
 cpmpy.expressions.variables

 	module

 	
 	
 cpmpy.model

 	module

 	
 cpmpy.solvers

 	module

 	
 cpmpy.solvers.exact

 	module

 	
 cpmpy.solvers.gurobi

 	module

 	
 cpmpy.solvers.minizinc

 	module

 	
 cpmpy.solvers.ortools

 	module

 	
 cpmpy.solvers.pysat

 	module

 	
 cpmpy.solvers.pysdd

 	module

 	
 cpmpy.solvers.utils

 	module

 	
 cpmpy.solvers.z3

 	module

 	
 cpmpy.transformations

 	module

 	
 cpmpy.transformations.flatten_model

 	module

 	
 cpmpy.transformations.get_variables

 	module

 	
 cpmpy.transformations.linearize

 	module

 	
 cpmpy.transformations.reification

 	module

 	
 cpmpy.transformations.to_cnf

 	module

 	ctypes (cpmpy.expressions.variables.NDVarArray attribute)

 	cumprod() (cpmpy.expressions.variables.NDVarArray method)

 	cumsum() (cpmpy.expressions.variables.NDVarArray method)

 	Cumulative (class in cpmpy.expressions.globalconstraints)

D

 	
 	data (cpmpy.expressions.variables.NDVarArray attribute)

 	decompose() (cpmpy.expressions.globalconstraints.AllDifferent method)

 	(cpmpy.expressions.globalconstraints.AllDifferentExcept0 method)

 	(cpmpy.expressions.globalconstraints.AllEqual method)

 	(cpmpy.expressions.globalconstraints.Circuit method)

 	(cpmpy.expressions.globalconstraints.Cumulative method)

 	(cpmpy.expressions.globalconstraints.GlobalCardinalityCount method)

 	(cpmpy.expressions.globalconstraints.GlobalConstraint method)

 	(cpmpy.expressions.globalconstraints.IfThenElse method)

 	(cpmpy.expressions.globalconstraints.InDomain method)

 	(cpmpy.expressions.globalconstraints.Inverse method)

 	(cpmpy.expressions.globalconstraints.Table method)

 	(cpmpy.expressions.globalconstraints.Xor method)

 	deepcopy() (cpmpy.expressions.core.BoolVal method)

 	(cpmpy.expressions.core.Comparison method)

 	(cpmpy.expressions.core.Expression method)

 	(cpmpy.expressions.core.Operator method)

 	(cpmpy.expressions.globalconstraints.AllDifferent method)

 	(cpmpy.expressions.globalconstraints.AllDifferentExcept0 method)

 	(cpmpy.expressions.globalconstraints.AllEqual method)

 	(cpmpy.expressions.globalconstraints.Circuit method)

 	(cpmpy.expressions.globalconstraints.Cumulative method)

 	(cpmpy.expressions.globalconstraints.DirectConstraint method)

 	(cpmpy.expressions.globalconstraints.GlobalCardinalityCount method)

 	(cpmpy.expressions.globalconstraints.GlobalConstraint method)

 	(cpmpy.expressions.globalconstraints.IfThenElse method)

 	(cpmpy.expressions.globalconstraints.InDomain method)

 	(cpmpy.expressions.globalconstraints.Inverse method)

 	(cpmpy.expressions.globalconstraints.Table method)

 	(cpmpy.expressions.globalconstraints.Xor method)

 	(cpmpy.expressions.variables.NDVarArray method)

 	(cpmpy.expressions.variables.NegBoolView method)

 	
 	default_params() (cpmpy.solvers.ortools.CPM_ortools class method)

 	diagonal() (cpmpy.expressions.variables.NDVarArray method)

 	DirectConstraint (class in cpmpy.expressions.globalconstraints)

 	dot() (cpmpy.expressions.variables.NDVarArray method)

 	(cpmpy.solvers.pysdd.CPM_pysdd method)

 	dtype (cpmpy.expressions.variables.NDVarArray attribute)

 	dump() (cpmpy.expressions.variables.NDVarArray method)

 	dumps() (cpmpy.expressions.variables.NDVarArray method)

E

 	
 	eval_comparison() (in module cpmpy.expressions.utils)

 	
 	Expression (class in cpmpy.expressions.core)

F

 	
 	fill() (cpmpy.expressions.variables.NDVarArray method)

 	fix() (cpmpy.solvers.exact.CPM_exact static method)

 	flags (cpmpy.expressions.variables.NDVarArray attribute)

 	flat (cpmpy.expressions.variables.NDVarArray attribute)

 	flat2cnf() (in module cpmpy.transformations.to_cnf)

 	
 	flatlist() (in module cpmpy.expressions.utils)

 	flatten() (cpmpy.expressions.variables.NDVarArray method)

 	flatten_constraint() (in module cpmpy.transformations.flatten_model)

 	flatten_model() (in module cpmpy.transformations.flatten_model)

 	flatten_objective() (in module cpmpy.transformations.flatten_model)

 	from_file() (cpmpy.model.Model static method)

G

 	
 	get() (cpmpy.solvers.utils.SolverLookup static method)

 	get_bounds() (cpmpy.expressions.core.BoolVal method)

 	(cpmpy.expressions.core.Comparison method)

 	(cpmpy.expressions.core.Expression method)

 	(cpmpy.expressions.core.Operator method)

 	(cpmpy.expressions.globalconstraints.AllDifferent method)

 	(cpmpy.expressions.globalconstraints.AllDifferentExcept0 method)

 	(cpmpy.expressions.globalconstraints.AllEqual method)

 	(cpmpy.expressions.globalconstraints.Circuit method)

 	(cpmpy.expressions.globalconstraints.Cumulative method)

 	(cpmpy.expressions.globalconstraints.DirectConstraint method)

 	(cpmpy.expressions.globalconstraints.GlobalCardinalityCount method)

 	(cpmpy.expressions.globalconstraints.GlobalConstraint method)

 	(cpmpy.expressions.globalconstraints.IfThenElse method)

 	(cpmpy.expressions.globalconstraints.InDomain method)

 	(cpmpy.expressions.globalconstraints.Inverse method)

 	(cpmpy.expressions.globalconstraints.Table method)

 	(cpmpy.expressions.globalconstraints.Xor method)

 	(cpmpy.expressions.variables.NDVarArray method)

 	(cpmpy.expressions.variables.NegBoolView method)

 	(in module cpmpy.expressions.utils)

 	
 	get_core() (cpmpy.solvers.exact.CPM_exact method)

 	(cpmpy.solvers.gurobi.CPM_gurobi method)

 	(cpmpy.solvers.minizinc.CPM_minizinc method)

 	(cpmpy.solvers.ortools.CPM_ortools method)

 	(cpmpy.solvers.pysat.CPM_pysat method)

 	(cpmpy.solvers.pysdd.CPM_pysdd method)

 	(cpmpy.solvers.z3.CPM_z3 method)

 	get_or_make_var() (in module cpmpy.transformations.flatten_model)

 	get_or_make_var_or_list() (in module cpmpy.transformations.flatten_model)

 	get_supported_solvers() (in module cpmpy.solvers.utils)

 	get_variables() (in module cpmpy.transformations.get_variables)

 	get_variables_model() (in module cpmpy.transformations.get_variables)

 	getfield() (cpmpy.expressions.variables.NDVarArray method)

 	GlobalCardinalityCount (class in cpmpy.expressions.globalconstraints)

 	GlobalConstraint (class in cpmpy.expressions.globalconstraints)

H

 	
 	has_objective() (cpmpy.solvers.exact.CPM_exact method)

 	(cpmpy.solvers.gurobi.CPM_gurobi method)

 	(cpmpy.solvers.minizinc.CPM_minizinc method)

 	(cpmpy.solvers.ortools.CPM_ortools method)

 	(cpmpy.solvers.pysat.CPM_pysat method)

 	(cpmpy.solvers.pysdd.CPM_pysdd method)

 	(cpmpy.solvers.z3.CPM_z3 method)

I

 	
 	IfThenElse (class in cpmpy.expressions.globalconstraints)

 	imag (cpmpy.expressions.variables.NDVarArray attribute)

 	implies() (cpmpy.expressions.core.BoolVal method)

 	(cpmpy.expressions.core.Comparison method)

 	(cpmpy.expressions.core.Expression method)

 	(cpmpy.expressions.core.Operator method)

 	(cpmpy.expressions.globalconstraints.AllDifferent method)

 	(cpmpy.expressions.globalconstraints.AllDifferentExcept0 method)

 	(cpmpy.expressions.globalconstraints.AllEqual method)

 	(cpmpy.expressions.globalconstraints.Circuit method)

 	(cpmpy.expressions.globalconstraints.Cumulative method)

 	(cpmpy.expressions.globalconstraints.DirectConstraint method)

 	(cpmpy.expressions.globalconstraints.GlobalCardinalityCount method)

 	(cpmpy.expressions.globalconstraints.GlobalConstraint method)

 	(cpmpy.expressions.globalconstraints.IfThenElse method)

 	(cpmpy.expressions.globalconstraints.InDomain method)

 	(cpmpy.expressions.globalconstraints.Inverse method)

 	(cpmpy.expressions.globalconstraints.Table method)

 	(cpmpy.expressions.globalconstraints.Xor method)

 	(cpmpy.expressions.variables.NDVarArray method)

 	(cpmpy.expressions.variables.NegBoolView method)

 	InDomain (class in cpmpy.expressions.globalconstraints)

 	IntVar() (in module cpmpy.expressions.variables)

 	intvar() (in module cpmpy.expressions.variables)

 	Inverse (class in cpmpy.expressions.globalconstraints)

 	is_any_list() (in module cpmpy.expressions.utils)

 	is_bool() (cpmpy.expressions.core.BoolVal method)

 	(cpmpy.expressions.core.Comparison method)

 	(cpmpy.expressions.core.Expression method)

 	(cpmpy.expressions.core.Operator method)

 	(cpmpy.expressions.globalconstraints.AllDifferent method)

 	(cpmpy.expressions.globalconstraints.AllDifferentExcept0 method)

 	(cpmpy.expressions.globalconstraints.AllEqual method)

 	(cpmpy.expressions.globalconstraints.Circuit method)

 	(cpmpy.expressions.globalconstraints.Cumulative method)

 	(cpmpy.expressions.globalconstraints.DirectConstraint method)

 	(cpmpy.expressions.globalconstraints.GlobalCardinalityCount method)

 	(cpmpy.expressions.globalconstraints.GlobalConstraint method)

 	(cpmpy.expressions.globalconstraints.IfThenElse method)

 	(cpmpy.expressions.globalconstraints.InDomain method)

 	(cpmpy.expressions.globalconstraints.Inverse method)

 	(cpmpy.expressions.globalconstraints.Table method)

 	(cpmpy.expressions.globalconstraints.Xor method)

 	(cpmpy.expressions.variables.NDVarArray method)

 	(cpmpy.expressions.variables.NegBoolView method)

 	(in module cpmpy.expressions.utils)

 	
 	is_boolexpr() (in module cpmpy.expressions.utils)

 	is_false_cst() (in module cpmpy.expressions.utils)

 	is_int() (in module cpmpy.expressions.utils)

 	is_num() (in module cpmpy.expressions.utils)

 	is_pure_list() (in module cpmpy.expressions.utils)

 	is_true_cst() (in module cpmpy.expressions.utils)

 	item() (cpmpy.expressions.variables.NDVarArray method)

 	itemset() (cpmpy.expressions.variables.NDVarArray method)

 	itemsize (cpmpy.expressions.variables.NDVarArray attribute)

K

 	
 	keywords (cpmpy.solvers.minizinc.CPM_minizinc attribute)

L

 	
 	linearize_constraint() (in module cpmpy.transformations.linearize)

 	
 	lookup() (cpmpy.solvers.utils.SolverLookup static method)

M

 	
 	max() (cpmpy.expressions.variables.NDVarArray method)

 	(in module cpmpy.expressions.python_builtins)

 	maximize() (cpmpy.model.Model method)

 	(cpmpy.solvers.exact.CPM_exact method)

 	(cpmpy.solvers.gurobi.CPM_gurobi method)

 	(cpmpy.solvers.minizinc.CPM_minizinc method)

 	(cpmpy.solvers.ortools.CPM_ortools method)

 	(cpmpy.solvers.pysat.CPM_pysat method)

 	(cpmpy.solvers.pysdd.CPM_pysdd method)

 	(cpmpy.solvers.z3.CPM_z3 method)

 	mean() (cpmpy.expressions.variables.NDVarArray method)

 	min() (cpmpy.expressions.variables.NDVarArray method)

 	(in module cpmpy.expressions.python_builtins)

 	minimize() (cpmpy.model.Model method)

 	(cpmpy.solvers.exact.CPM_exact method)

 	(cpmpy.solvers.gurobi.CPM_gurobi method)

 	(cpmpy.solvers.minizinc.CPM_minizinc method)

 	(cpmpy.solvers.ortools.CPM_ortools method)

 	(cpmpy.solvers.pysat.CPM_pysat method)

 	(cpmpy.solvers.pysdd.CPM_pysdd method)

 	(cpmpy.solvers.z3.CPM_z3 method)

 	Model (class in cpmpy.model)

 	
 module

 	cpmpy.expressions

 	cpmpy.expressions.core

 	cpmpy.expressions.globalconstraints

 	cpmpy.expressions.python_builtins

 	cpmpy.expressions.utils

 	cpmpy.expressions.variables

 	cpmpy.model

 	cpmpy.solvers

 	cpmpy.solvers.exact

 	cpmpy.solvers.gurobi

 	cpmpy.solvers.minizinc

 	cpmpy.solvers.ortools

 	cpmpy.solvers.pysat

 	cpmpy.solvers.pysdd

 	cpmpy.solvers.utils

 	cpmpy.solvers.z3

 	cpmpy.transformations

 	cpmpy.transformations.flatten_model

 	cpmpy.transformations.get_variables

 	cpmpy.transformations.linearize

 	cpmpy.transformations.reification

 	cpmpy.transformations.to_cnf

 	
 	mzn_name_pattern (cpmpy.solvers.minizinc.CPM_minizinc attribute)

 	mzn_time_to_seconds() (cpmpy.solvers.minizinc.CPM_minizinc method)

N

 	
 	nbytes (cpmpy.expressions.variables.NDVarArray attribute)

 	ndim (cpmpy.expressions.variables.NDVarArray attribute)

 	NDVarArray (class in cpmpy.expressions.variables)

 	NegBoolView (class in cpmpy.expressions.variables)

 	
 	newbyteorder() (cpmpy.expressions.variables.NDVarArray method)

 	nonzero() (cpmpy.expressions.variables.NDVarArray method)

 	normalized_boolexpr() (in module cpmpy.transformations.flatten_model)

 	normalized_numexpr() (in module cpmpy.transformations.flatten_model)

 	NullShapeError

O

 	
 	objective() (cpmpy.model.Model method)

 	(cpmpy.solvers.exact.CPM_exact method)

 	(cpmpy.solvers.gurobi.CPM_gurobi method)

 	(cpmpy.solvers.minizinc.CPM_minizinc method)

 	(cpmpy.solvers.ortools.CPM_ortools method)

 	(cpmpy.solvers.pysat.CPM_pysat method)

 	(cpmpy.solvers.pysdd.CPM_pysdd method)

 	(cpmpy.solvers.z3.CPM_z3 method)

 	objective_value() (cpmpy.model.Model method)

 	(cpmpy.solvers.exact.CPM_exact method)

 	(cpmpy.solvers.gurobi.CPM_gurobi method)

 	(cpmpy.solvers.minizinc.CPM_minizinc method)

 	(cpmpy.solvers.ortools.CPM_ortools method)

 	(cpmpy.solvers.pysat.CPM_pysat method)

 	(cpmpy.solvers.pysdd.CPM_pysdd method)

 	(cpmpy.solvers.z3.CPM_z3 method)

 	
 	only_bv_reifies() (in module cpmpy.transformations.reification)

 	only_implies() (in module cpmpy.transformations.reification)

 	only_positive_bv() (in module cpmpy.transformations.linearize)

 	Operator (class in cpmpy.expressions.core)

P

 	
 	param_combinations() (in module cpmpy.solvers.utils)

 	partition() (cpmpy.expressions.variables.NDVarArray method)

 	print_variables() (in module cpmpy.transformations.get_variables)

 	
 	printmap (cpmpy.expressions.core.Operator attribute)

 	prod() (cpmpy.expressions.variables.NDVarArray method)

 	ptp() (cpmpy.expressions.variables.NDVarArray method)

 	put() (cpmpy.expressions.variables.NDVarArray method)

R

 	
 	ravel() (cpmpy.expressions.variables.NDVarArray method)

 	real (cpmpy.expressions.variables.NDVarArray attribute)

 	reify_rewrite() (in module cpmpy.transformations.reification)

 	
 	repeat() (cpmpy.expressions.variables.NDVarArray method)

 	reshape() (cpmpy.expressions.variables.NDVarArray method)

 	resize() (cpmpy.expressions.variables.NDVarArray method)

 	round() (cpmpy.expressions.variables.NDVarArray method)

S

 	
 	searchsorted() (cpmpy.expressions.variables.NDVarArray method)

 	set_description() (cpmpy.expressions.core.BoolVal method)

 	(cpmpy.expressions.core.Comparison method)

 	(cpmpy.expressions.core.Expression method)

 	(cpmpy.expressions.core.Operator method)

 	(cpmpy.expressions.globalconstraints.AllDifferent method)

 	(cpmpy.expressions.globalconstraints.AllDifferentExcept0 method)

 	(cpmpy.expressions.globalconstraints.AllEqual method)

 	(cpmpy.expressions.globalconstraints.Circuit method)

 	(cpmpy.expressions.globalconstraints.Cumulative method)

 	(cpmpy.expressions.globalconstraints.DirectConstraint method)

 	(cpmpy.expressions.globalconstraints.GlobalCardinalityCount method)

 	(cpmpy.expressions.globalconstraints.GlobalConstraint method)

 	(cpmpy.expressions.globalconstraints.IfThenElse method)

 	(cpmpy.expressions.globalconstraints.InDomain method)

 	(cpmpy.expressions.globalconstraints.Inverse method)

 	(cpmpy.expressions.globalconstraints.Table method)

 	(cpmpy.expressions.globalconstraints.Xor method)

 	(cpmpy.expressions.variables.NDVarArray method)

 	(cpmpy.expressions.variables.NegBoolView method)

 	setfield() (cpmpy.expressions.variables.NDVarArray method)

 	setflags() (cpmpy.expressions.variables.NDVarArray method)

 	shape (cpmpy.expressions.variables.NDVarArray attribute)

 	size (cpmpy.expressions.variables.NDVarArray attribute)

 	solution_hint() (cpmpy.solvers.exact.CPM_exact method)

 	(cpmpy.solvers.gurobi.CPM_gurobi method)

 	(cpmpy.solvers.minizinc.CPM_minizinc method)

 	(cpmpy.solvers.ortools.CPM_ortools method)

 	(cpmpy.solvers.pysat.CPM_pysat method)

 	(cpmpy.solvers.pysdd.CPM_pysdd method)

 	(cpmpy.solvers.z3.CPM_z3 method)

 	solve() (cpmpy.model.Model method)

 	(cpmpy.solvers.exact.CPM_exact method)

 	(cpmpy.solvers.gurobi.CPM_gurobi method)

 	(cpmpy.solvers.minizinc.CPM_minizinc method)

 	(cpmpy.solvers.ortools.CPM_ortools method)

 	(cpmpy.solvers.pysat.CPM_pysat method)

 	(cpmpy.solvers.pysdd.CPM_pysdd method)

 	(cpmpy.solvers.z3.CPM_z3 method)

 	solveAll() (cpmpy.model.Model method)

 	(cpmpy.solvers.exact.CPM_exact method)

 	(cpmpy.solvers.gurobi.CPM_gurobi method)

 	(cpmpy.solvers.minizinc.CPM_minizinc method)

 	(cpmpy.solvers.ortools.CPM_ortools method)

 	(cpmpy.solvers.pysat.CPM_pysat method)

 	(cpmpy.solvers.pysdd.CPM_pysdd method)

 	(cpmpy.solvers.z3.CPM_z3 method)

 	
 	solver_var() (cpmpy.solvers.exact.CPM_exact method)

 	(cpmpy.solvers.gurobi.CPM_gurobi method)

 	(cpmpy.solvers.minizinc.CPM_minizinc method)

 	(cpmpy.solvers.ortools.CPM_ortools method)

 	(cpmpy.solvers.pysat.CPM_pysat method)

 	(cpmpy.solvers.pysdd.CPM_pysdd method)

 	(cpmpy.solvers.z3.CPM_z3 method)

 	solver_vars() (cpmpy.solvers.exact.CPM_exact method)

 	(cpmpy.solvers.gurobi.CPM_gurobi method)

 	(cpmpy.solvers.minizinc.CPM_minizinc method)

 	(cpmpy.solvers.ortools.CPM_ortools method)

 	(cpmpy.solvers.pysat.CPM_pysat method)

 	(cpmpy.solvers.pysdd.CPM_pysdd method)

 	(cpmpy.solvers.z3.CPM_z3 method)

 	SolverLookup (class in cpmpy.solvers.utils)

 	solvernames() (cpmpy.solvers.minizinc.CPM_minizinc static method)

 	(cpmpy.solvers.pysat.CPM_pysat static method)

 	(cpmpy.solvers.utils.SolverLookup static method)

 	sort() (cpmpy.expressions.variables.NDVarArray method)

 	squeeze() (cpmpy.expressions.variables.NDVarArray method)

 	status() (cpmpy.model.Model method)

 	(cpmpy.solvers.exact.CPM_exact method)

 	(cpmpy.solvers.gurobi.CPM_gurobi method)

 	(cpmpy.solvers.minizinc.CPM_minizinc method)

 	(cpmpy.solvers.ortools.CPM_ortools method)

 	(cpmpy.solvers.pysat.CPM_pysat method)

 	(cpmpy.solvers.pysdd.CPM_pysdd method)

 	(cpmpy.solvers.z3.CPM_z3 method)

 	std() (cpmpy.expressions.variables.NDVarArray method)

 	strides (cpmpy.expressions.variables.NDVarArray attribute)

 	sum() (cpmpy.expressions.variables.NDVarArray method)

 	(in module cpmpy.expressions.python_builtins)

 	supported() (cpmpy.solvers.exact.CPM_exact static method)

 	(cpmpy.solvers.gurobi.CPM_gurobi static method)

 	(cpmpy.solvers.minizinc.CPM_minizinc static method)

 	(cpmpy.solvers.ortools.CPM_ortools static method)

 	(cpmpy.solvers.pysat.CPM_pysat static method)

 	(cpmpy.solvers.pysdd.CPM_pysdd static method)

 	(cpmpy.solvers.z3.CPM_z3 static method)

 	swapaxes() (cpmpy.expressions.variables.NDVarArray method)

T

 	
 	T (cpmpy.expressions.variables.NDVarArray attribute)

 	Table (class in cpmpy.expressions.globalconstraints)

 	take() (cpmpy.expressions.variables.NDVarArray method)

 	to_cnf() (in module cpmpy.transformations.to_cnf)

 	to_file() (cpmpy.model.Model method)

 	tobytes() (cpmpy.expressions.variables.NDVarArray method)

 	tofile() (cpmpy.expressions.variables.NDVarArray method)

 	tolist() (cpmpy.expressions.variables.NDVarArray method)

 	tostring() (cpmpy.expressions.variables.NDVarArray method)

 	
 	trace() (cpmpy.expressions.variables.NDVarArray method)

 	transform() (cpmpy.solvers.exact.CPM_exact method)

 	(cpmpy.solvers.gurobi.CPM_gurobi method)

 	(cpmpy.solvers.minizinc.CPM_minizinc method)

 	(cpmpy.solvers.ortools.CPM_ortools method)

 	(cpmpy.solvers.pysat.CPM_pysat method)

 	(cpmpy.solvers.pysdd.CPM_pysdd method)

 	(cpmpy.solvers.z3.CPM_z3 method)

 	transpose() (cpmpy.expressions.variables.NDVarArray method)

 	tunable_params() (cpmpy.solvers.ortools.CPM_ortools class method)

V

 	
 	value() (cpmpy.expressions.core.BoolVal method)

 	(cpmpy.expressions.core.Comparison method)

 	(cpmpy.expressions.core.Expression method)

 	(cpmpy.expressions.core.Operator method)

 	(cpmpy.expressions.globalconstraints.AllDifferent method)

 	(cpmpy.expressions.globalconstraints.AllDifferentExcept0 method)

 	(cpmpy.expressions.globalconstraints.AllEqual method)

 	(cpmpy.expressions.globalconstraints.Circuit method)

 	(cpmpy.expressions.globalconstraints.Cumulative method)

 	(cpmpy.expressions.globalconstraints.DirectConstraint method)

 	(cpmpy.expressions.globalconstraints.GlobalCardinalityCount method)

 	(cpmpy.expressions.globalconstraints.GlobalConstraint method)

 	(cpmpy.expressions.globalconstraints.IfThenElse method)

 	(cpmpy.expressions.globalconstraints.InDomain method)

 	(cpmpy.expressions.globalconstraints.Inverse method)

 	(cpmpy.expressions.globalconstraints.Table method)

 	(cpmpy.expressions.globalconstraints.Xor method)

 	(cpmpy.expressions.variables.NDVarArray method)

 	(cpmpy.expressions.variables.NegBoolView method)

 	
 	var() (cpmpy.expressions.variables.NDVarArray method)

 	vars_expr() (in module cpmpy.transformations.get_variables)

 	view() (cpmpy.expressions.variables.NDVarArray method)

W

 	
 	with_traceback() (cpmpy.expressions.variables.NullShapeError method)

X

 	
 	Xor (class in cpmpy.expressions.globalconstraints)

Documentation

Best viewed online at readthedocs: https://cpmpy.readthedocs.io/

You can try out the notebooks [https://mybinder.org/v2/gh/CPMpy/cpmpy/HEAD?labpath=examples] online thanks to binder!

For CPMpy developers

You can render the documentation locally with make html, which will generate html in ‘_build/html’.

Getting started with Constraint Programming and CPMpy

Constraint Programming

Many real-life decision problems involve searching over a large number of possible solutions to find one that satisfies all constraints and/or optimizes an objective function. For example in timetabling, scheduling, packing, routing and many more.

To decide if a problem is feasible or finding the best one amongst all the options is hard task to do by hand. And enumerating all possible solutions and simply checking whether they are good (generate-and-test) is usually infeasible in practice.

Instead, the paradigm of constraint programming (CP) allow you to:

	Model the space of possible solutions through decision variables and their domains

	Model relations between variables through constraints and an objective function

	Have a state-of-the-art solver compute the answer efficiently.

So despite the word ‘Programming’ in Constraint Programming (since forever), as a user you only have to focus on modeling the problem, not on programming the search. This is the convenience and appeal of Constraint Programming.

Satisfaction versus Optimisation

A constraint satisfaction problem (CSP) consists of a set of variables and constraints establishing relationships between them. Each variable has a finite of possible values (its domain). The goal is to assign values to the variables in its domains satisfying all the constraints.

A more general version, called constraint optimization programming (COP), finds amongst all the feasible solutions the one that optimizes some measure, called ‘objective function’.

The state-of-the-art CP solvers can perform both very efficiently, so it is up to you to decide wether you have a satisfaction or an optimisation problem.

What is necessary to model a CP problem?

A typical CP problem is defined by the following elements:

Variables: Variables represents the decisions to be made. Depending on the decisions to be made variables can be Boolean, whenever a Yes or No decision is needed to be made, or Integer, whenever an integer number is necessary to represent a decision. In the first case, we say the domain of a Boolean variable is the set {True, False}. For integer variables we represent this as an interval of integer numbers, [a,b].

Constraints: Constraints are all the relations that variables must satisfy. A set of values of the variables satisfying all the constraints is named a feasible solution. In CP, constraints can be boolean expressions, arithmetic operations or global constraints [https://cpmpy.readthedocs.io/en/latest/api/expressions/globalconstraints.html].

Moreover, if we want to model an constrained optimization problem we also need to specify an

Objective function: This is a function of the set of variables returning a real number. This metric is maximized or minimized over the set of all feasible solutions. An optimal solution is the one that satisfies all the constrains and returns the biggest value of the objective function (the smallest in case of minimization).

Example: cryptarithemtic

A cryptarithmetic puzzle is a mathematical challenge where the digits of some numbers are represented by letters (or symbols). Each letter represents a unique digit. The goal is to find the digits such that a given mathematical equation is verified.

For example, we aim to allocate to the letters S,E,N,D,M,O,R,Y a digit between 0 and 9, being all the letters allocated to a different digit and such that the expression:

SEND + MORE = MONEY

is satisfied. This problem lies into the setting of constraint satisfaction problem (CSP). Here the variables are each letter S,E,N,D,M,O,R,Y and their domain is {0,1,2,…,9}. The constraints represents the fact that the values of the letters need to sum up. And to be mathematically clean, the first letters can not be 0.

Cryptarythmetic in CPMpy

First we need to import all the tools that we will need to create our CP model, namely numpy and our CPMpy library:

import numpy as np
from cpmpy import *

Secondly, as in every constraint programming model we need to define the decision variables:

s, e, n, d, m, o, r, y = intvar(0, 9, shape=8)

This line indicates that we are creating 8 integer decision variables, s,e,n,d,m,o,r,y, and each will take a value between 0 and 9 (inclusive) in the solution. The shape argument informs the shape of the tensor (in this case, a vector of size 8, unpacked over the individual letters).

Thirdly, the constraints. We will immediately wrap them in a Model() object:

Constraints are included in the model as a list. First, we create a list to add the constraints. Then, we append an ‘all different constraint’ in a straightforward fashion. Finally, we add the constraint saying SEND + MORE = MONEY.

model = Model(
 AllDifferent(s, e, n, d, m, o, r, y),
 (sum([s, e, n, d] * np.array([1000, 100, 10, 1])) \
 + sum([m, o, r, e] * np.array([1000, 100, 10, 1])) \
 == sum([m, o, n, e, y] * np.array([10000, 1000, 100, 10, 1]))),
 s > 0,
 m > 0,
)

The first line uses the AllDifferent global constraint. It is a CP primitive that will enforce that all variables get a different value. CP solvers have highly optimized procedures to enforce such constraints, hence the choice to model this with one AllDifferent global constraint rather then specifying that each pair of variables to have different values.

The second line (split over 3 lines) enforces the mathematical relation. Because CPMpy is based on the omnipresent numpy scientific library, you can perform products and other operators on combinations of CPMpy and NumPy arrays.

The last two lines enforce that the starting digits are not 0.

Solving a CPMpy model

Solving a model is as easy as calling .solve() on it, which will automatically search for a solver installed on the system, and make it solve the model:

model.solve()

The return value will be whether the model was satisfiable or not (True/False) in case of a satisfaction problem, and what the optimal value was in case of an optimisation problem.

The solution will be backpopulated in the decision variables used, and can be obtained by calling the .value() function on a decision variable. For example:

if model.solve():
 print(" S,E,N,D = ", [x.value() for x in [s, e, n, d]])
 print(" M,O,R,E = ", [x.value() for x in [m, o, r, e]])
 print("M,O,N,E,Y =", [x.value() for x in [m, o, n, e, y]])
else:
 print("No solution found")

And that is all there is to it…

Cryptarythmetic optimisation problem

So far we have considered a satisfaction problem, where we needed to find any satisfying solution (it was unique, see multiple_solutions doc on how to find out).

We now consider the ‘SEND + MOST = MONEY’ problem, where we wish to maximize the number formed by the letters ‘MONEY’.

We first model the constraints as before:

import numpy as np
from cpmpy import *

s, e, n, d, m, o, t, y = intvar(0, 9, shape=8)

model = Model(
 AllDifferent(s, e, n, d, m, o, t, y),
 (sum([s, e, n, d] * np.array([1000, 100, 10, 1])) \
 + sum([m, o, s, t] * np.array([1000, 100, 10, 1])) \
 == sum([m, o, n, e, y] * np.array([10000, 1000, 100, 10, 1]))),
 s > 0,
 m > 0,
)

And now the objective function. Note that this just states that it is a maximisation problem, it does not yet compute the maximization.

model.maximize(sum([m, o, n, e, y] * np.array([10000, 1000, 100, 10, 1])))

And then we solve and print! Now how solve() does not return True/False as for a satisfaction problem, but returns the objective’s value.

model.solve()
print(" S,E,N,D = ", [x.value() for x in [s, e, n, d]])
print(" M,O,S,T = ", [x.value() for x in [m, o, s, t]])
print("M,O,N,E,Y =", [x.value() for x in [m, o, n, e, y]])

If you want to maximize the value of the word ‘MOST’, this is only requires changing the objective (you can overwrite objectives and resolve the same model without any problem):

model.maximize(sum([m, o, s, t] * np.array([1000, 100, 10, 1])))
model.solve()
print(" S,E,N,D = ", [x.value() for x in [s, e, n, d]])
print(" M,O,S,T = ", [x.value() for x in [m, o, s, t]])
print("M,O,N,E,Y =", [x.value() for x in [m, o, n, e, y]])

And much more

To get more familiar with these concepts, you can experiment with modeling and solving the sudoku puzzle problem in the following notebook [https://github.com/CPMpy/cpmpy/blob/master/examples/quickstart_sudoku.ipynb].

And many more examples on scheduling, packing, routing and more in the examples folder [https://github.com/CPMpy/cpmpy/blob/master/examples/].

References

To learn more about theory and practice of constraint programming you may want to check some of these references:

	Rossi, F., Van Beek, P., & Walsh, T. (Eds.). (2006). Handbook of constraint programming. Elsevier.

	Apt, K. (2003). Principles of constraint programming. Cambridge university press.

	Schaus, P., Michel, L., & Van Hentenryck, P.. Constraint Programming MOOC (EDX [https://www.edx.org/course/constraint-programming]).

Behind the scenes: CPMpy’s pipeline

CPMpy conceptually has two key parts:

	the ‘language’ that allows expressing constraint programming problems,

	a mechanism to translate this language to the API of solvers.

Implementation wise, CPMpy has the following structure:

	
	cpmpy/
	
	model.py

	expressions/

	solvers/

	transformations/

Everything related to the language is contained in the cpmpy.expressions module. The other modules support the translation and solving.

The language

When you write a CPMpy model (constraints and an objective), you use Python’s operators (*,+,sum,-,~,|,& etc) on CPMpy variables, as well as CPMpy functions and global constraints.

CPMpy uses Python’s operator overloading to build expression trees (see expression.py). From CPMpy’s point of view, a constraint programming problem is a list of expression trees (each one representing a constraint) and an expression tree for the objective function. You can write very complex nested expressions (e.g. (a | b) == ((x + y > 5) -> (c & d))), the language itself has few restrictions.

CPMpy only does minor modifications to the expressions when building the expression trees, e.g., it removes constants when chaining operators (e.g. x + 0 :: x).

So the language offers acces to the high level expressions written by the user.

But solvers can’t use this…

The mechanism

We have a number of staged transformations that the expression trees go through. These roughly correspond to different ‘normal forms’ as one would do in SAT, however, there are no ‘normal forms’ for constraint specifications as far as we are aware.

So far, we have the following 3 stages:

CPMpy expression trees -> flatten -> solver-specific transf -> solver API
|--------------------| |-----| |-----------------------------------|

As said, CPMpy expression trees allow arbitrary nesting, but only modeling languages (like MiniZinc and XCSP3) allow that. So if we want to use a solver API directly, we need to ‘flatten’ the nested expressions first.

Then, every solver has its own API, as well as some peculiarities (e.g. OR-Tools only supports implication/half-reification ->, not standard double reification == (sometimes written as <->). These transformations are bundled into the solver-specific file in CPMpy.

Flattened ‘normal form’

This part needs updating, see cpmpy.transformations.flatten_model for the latest docs*

So that leaves the question, what is and is not allowed in this ‘flattened’ inbetween output?

Ideally, we can come up with a grammar that determines a formal normal form. By lack of that, here is a more informal description that is grammar-like.

Var = IntVar | BoolVar | Num
BoolVar = BoolVarImpl | NegBoolView | True | False

A variable is either an Integer decision variable, or a Boolean decision variable, or a numeric constant. For Boolean decision variables we have a special case: it is either an actual Boolean decision variable, or the negation of a Boolean decision variable (a negated ‘view’ on the variable), or the trivial True/False.

BaseCons = ("name", [Var])

A ‘base’ constraint is simply a name, with a list of variables (no nested expressions). This includes global constraints, but also conjunction, disjunction, equality, etc.

To support linear constraints and reification (equating the truth-value of a constraint to a Boolean variable), we allow a few cases where a comparison operator can have a base constraint as its left-hand side.

Special case 1, linear constraints:

We first define a linear expression as follows (weighted linear sum):

LinExpr = ("sum", ([Constant], [Var]))

This can be used in a linear constraint, or in the objective function:

Obj = Var | LinExpr

TODO: what about Max(), Min(), e.g. for makespan? Should be a standard operator?

A constraint that adds a comparison operator on a linear expression has two forms:

LinConsRel = ("==", (LinExpr, Var)) | ("!=", (LinExpr, Var))

So (dis)equality can have a variable (or a constant) as its right-hand side. Inequality comparison operators will not:

Op = ">" | ">=" | "<" | "<="
LinConsIne = (Op, (LinExpr, Num))

Special case 2, reification:

We first define the Boolean expressions that allow reification:

BoolExpr = ("and", [Var]) | ("or", [Var]) | LinConsRel | LinConsIne

TODO: some globals may also support reification… check and update here

Now, like linear constraints, in case of reification and implication, the left-hand side can be a simple Boolean expression with the right-hand side a Boolean variable:

Reif = ("==", (BoolExpr, BoolVar))
Impl = ("->", (BoolExpr, BoolVar))

Installation instructions

CPMpy requires Python 3.6 or newer. The package is available on PyPI [https://pypi.org/].

The easiest way is to install using the ‘pip’ command line package manager. In a terminal, run:

$ pip install cpmpy

This will automatically also install the default ‘ortools’ solver.

If the previous command fails to execute, it may be due to the permission to install the package globally Python packages. If so, you can install it for your user only with:

$ pip install cpmpy --user

CPMpy has regular small releases with updates and improvements, so it is a good habbit to regularly update, as follows:

$ pip install -U cpmpy

Installing from a git repository

If you want the very latest, or perhaps from an in-development branch, you can install directly from github as follows:

$ pip install git+https://github.com/cpmpy/cpmpy@master

(change ‘master’ to any other branch or commit hash)

Installing a local copy

If you are developing CPMpy locally, you can run scripts from in the repository folder, and it will use the cpmpy/ folder as package instead of any installed one.

However, if you want to test some local changes to CPMpy that can only be tested by installing CPMpy, you can do that as follows from the repository folder:

$ pip install .

Setting solver parameters and hyperparameter search

Calling a solver by name

You can see the list of available solvers (and subsolvers) as follows:

from cpmpy import *

print(SolverLookup.solvernames())

On my system, with pysat and minizinc installed, this gives `[‘ortools’, ‘minizinc’, ‘minizinc:chuffed’, ‘minizinc:coin-bc’, …, ‘pysat:minicard’, ‘pysat:minisat22’, ‘pysat:minisat-gh’]

You can use any of these solvers by passing its name to the Model.solve() parameter ‘solver’ as such:

a,b = boolvar(2)
Model(a|b).solve(solver='minizinc:chuffed')

Setting solver parameters

OR-tools has many solver parameters, documented here [https://github.com/google/or-tools/blob/stable/ortools/sat/sat_parameters.proto].

CPMpy’s interface to ortools accepts keyword arguments to solve(), and will set the corresponding or-tools parameters if the name matches. We documented some of the frequent once in our CPM_ortools API.

For example, with model a CPMpy Model(), you can do the following to make or-tools use 8 parallel cores and print search progress:

from cpmpy import *
from cpmpy.solvers import CPM_ortools

s = CPM_ortools(model)
s.solve(num_search_workers=8, log_search_progress=True)

Hyperparameter search across different parameters

Because CPMpy offers programmatic access to the solver API, hyperparameter search can be straightforwardly done with little overhead between the calls.

The tools directory contains a utility to efficiently search through the hyperparameter space defined by the solvers tunable_params.
This utlity is based on the SMBO framework and speeds up the search by implementing adaptive capping.

The parameter tuner is based on the following publication:

Ignace Bleukx, Senne Berden, Lize Coenen, Nicholas Decleyre, Tias Guns (2022). Model-Based Algorithm
Configuration with Adaptive Capping and Prior Distributions. In: Schaus, P. (eds) Integration of Constraint
Programming, Artificial Intelligence, and Operations Research. CPAIOR 2022. Lecture Notes in Computer Science,
vol 13292. Springer, Cham. https://doi.org/10.1007/978-3-031-08011-1_6

In the following example, we tune the OR-tools solver.

from cpmpy import *
from cpmpy.tools import ParameterTuner

model = Model(...)

tuner = ParameterTuner("ortools", model)
best_params = tuner.tune(max_tries=100)
print(f"Tuner reduced runtime from {tuner.base_runtime}s to {tuner.best_runtime}s")

now solve (a slightly different?) model using the best parameters
solver = SolverLookup.get("ortools", model)
solver.solve(**best_params)

However, solverinterfaces are not required to present a list of tunable parameters and the tool allows you to define the set of tunable parameters (and values) yourself.

from cpmpy import *
from cpmpy.tools import ParameterTuner

model = Model(...)

tunables ={
 "MIPFocus": [0,1,2,3],
 "Method" : [-1, 0, 1,2,3,4,5],
 "FlowCoverCuts" :[-1,0,1,2]
}
defaults = {
 "MIPFocus": 0,
 "Method": -1,
 "FlowCoverCuts": -1
}

tuner = ParameterTuner("gurobi", model, tunables, defaults)
print(f"Tuner reduced runtime from {tuner.base_runtime}s to {tuner.best_runtime}s")

best_params = tuner.tune(time_limit=10)

solver = SolverLookup.get("gurobi", model)
solver.solve(**best_params)

Solvers

CPMpy can be used as a declarative modeling language: you create a Model(), add constraints and call solve() on it.

The default solver is ortools CP-SAT, an award winning constraint solver. But CPMpy supports multiple other solvers: a MIP solver (gurobi), SAT solvers (those in PySAT), the Z3 SMT solver, a conflict-driven cutting-planes solver (Exact), even a knowledge compiler (PySDD) and any CP solver supported by the text-based MiniZinc language.

See the list of solvers known by CPMpy with:

SolverLookup.solvernames()

Note that many require additional packages to be installed. For example, try SolverLookup.get("gurobi") to see if the commercial gurobi solver is available on your system. See the API documentation of the solver for installation instructions.

You can specify a solvername when calling solve() on a model:

from cpmpy import *
x = intvar(0,10, shape=3)
m = Model()
m += sum(x) <= 5
use named solver
m.solve(solver="ortools")

In this case, a model is a lazy container. It simply stores the constraints. Only when solve() is called will it instantiate a solver, and send the entire model to it at once. The last line above is equivalent to:

s = SolverLookup.get("ortools", m)
s.solve()

Model versus solver interface

Solver interfaces allow more than the generic model interface, because, well, they can support solver-specific features. Such as solver-specific parameters, passing a previous solution to start from, incremental solving, unsat core extraction, solver-specific callbacks etc.

Importantly, the solver interface supports the same functions as the Model() object (for adding constraints, an objective, solve, solveAll, status, …). So if you want to make use of some features of a solver, simply replace m = Model() by m = SolverLookup.get("your-preferred-solvername") and your code remains valid. Below, we replace m by s for readability.

from cpmpy import *
x = intvar(0,10, shape=3)
s = SolverLookup.get("ortools")
s += sum(x) <= 5
we are operating on the ortools interface here
s.solve()

Creating a solver object using an initialized Model instance will not alter the Model in any way during or after solving. This is especially important when querying the status to get the result of a solve call. For example, in the following, m.status() and s.status() will not yield the same result!

s = SolverLookup.get("ortools",m)
s.solve()

Setting solver parameters

Now lets use our solver-specific powers: ortools has a parameter _log_searchprogress that make it show information during solving for example:

we are operating on the ortools interface here
s.solve(log_search_progress=True)

Modern CP-solvers support a variety of hyperparameters. (OR-tools parameters [https://github.com/google/or-tools/blob/stable/ortools/sat/sat_parameters.proto] for example).
Using the solver interface, any solver parameter can be passed using the .solve() call.
These parameters will then be posted to the native solver object before solving the model.

s.solve(cp_model_probing_level = 2,
 linearization_level = 0,
 symmetry_level = 1)

See the API documentation of the solvers for information and links on the parameters supported. See our documentation page on solver parameters if you want to tune your hyperparameters automatically.

Using solver-specific CPMpy functions

We sometimes add solver-specific features to the CPMpy interface, for convenient access. Two examples of this are solution_hint() and get_core() which is supported by the OrTools and PySAT solvers and interfaces. Other solvers work very different and do not have these concepts.

solution_hint() tells the solver that it could use these variable-values first during search, e.g. typically from a previous solution:

from cpmpy import *
x = intvar(0,10, shape=3)
s = SolverLookup.get("ortools")
s += sum(x) <= 5
we are operating on a ortools' interface here
s.solution_hint(x, [1,2,3])
s.solve()
print(x.value())

get_core() asks the solver for an unsatisfiable core, in case a solution did not exist and assumption variables were used. See the documentation on Unsat core extraction.

See the API documentation of the solvers to learn about their special functions.

Incremental solving

It is important to realize that a CPMpy solver interface is eager. That means that when a CPMpy constraint is added to a solver object, CPMpy immediately translates it and posts the constraints to the underlying solver.

This has two potential benefits for incremental solving, whereby you add more constraints and variables inbetween solve calls:

	CPMpy only translates and posts each constraint once, even if the model is solved multiple times; and

	if the solver itself is incremental then it can reuse any information from call to call, as the state of the native solver object is kept between solver calls and can therefore rely on information derived during a previous solve call.

gs = SolverLookup.get("gurobi")

gs += sum(ivar) <= 5
gs.solve()

gs += sum(ivar) == 3
the underlying gurobi instance is reused, only the new constraint is added to it.
gurobi is an incremental solver and will look for solutions starting from the previous one.
gs.solve()

Technical note: ortools its model representation is incremental but its solving itself is not (yet?). Gurobi and the PySAT solvers are fully incremental, as is Z3. The text-based MiniZinc language is not incremental.

Direct solver access

Some solvers implement more constraints then available in CPMpy. But CPMpy offers direct access to the underlying solver, so there are two ways to post such solver-specific constraints.

DirectConstraint

The DirectConstraint will directly call a function of the underlying solver when added to a CPMpy solver.

You provide it with the name of the function you want to call, as well as the arguments:

from cpmpy import *
iv = intvar(1,9, shape=3)

s = SolverLookup.get("ortools")

s += AllDifferent(iv)
s += DirectConstraint("AddAllDifferent", iv) # a DirectConstraint equivalent to the above for OrTools

This requires knowledge of the API of the underlying solver, as any function name that you give to it will be called. The only special thing that the DirectConstraint does, is automatically translate any CPMpy variable in the argument to the native solver variable.

Note that any argument given will be checked for whether it needs to be mapped to a native solver variable. This may give errors on complex arguments, or be inefficient. You can tell the DirectConstraint not to scan for variables with noarg argument, for example:

from cpmpy import *
trans_vars = boolvar(shape=4, name="trans")

s = SolverLookup.get("ortools")

trans_tabl = [# corresponds to regex 0* 1+ 0+
 (0, 0, 0),
 (0, 1, 1),
 (1, 1, 1),
 (1, 0, 2),
 (2, 0, 2)
]
s += DirectConstraint("AddAutomaton", (trans_vars, 0, [2], trans_tabl),
 novar=[1, 2, 3]) # optional, what not to scan for vars

A minimal example of the DirectConstraint for every supported solver is in the test suite [https://github.com/CPMpy/cpmpy/tree/master/tests/test_direct.py].

The DirectConstraint is a very powerful primitive to get the most out of specific solvers. See the following examples: nonogram_ortools.ipynb [https://github.com/CPMpy/cpmpy/tree/master/examples/nonogram_ortools.ipynb] using of a helper function that generates automatons with DirectConstraints; vrp_ortools.py [https://github.com/CPMpy/cpmpy/tree/master/examples/vrp_ortools.ipynb] demonstrating ortools’ newly introduced multi-circuit global constraint through DirectConstraint; and pctsp_ortools.py [https://github.com/CPMpy/cpmpy/tree/master/examples/pctsp_ortools.ipynb] that uses a DirectConstraint to use ortools circuit to post a sub-circuit constraint as needed for this price-collecting TSP variant.

Directly accessing the underlying solver

The DirectConstraint("AddAllDifferent", iv) is equivalent to the following code, which demonstrates that you can mix the use of CPMpy with calling the underlying solver directly:

from cpmpy import *
iv = intvar(1,9, shape=3)

s = SolverLookup.get("ortools")

s += AllDifferent(iv) # the traditional way, equivalent to:
s.ort_model.AddAllDifferent(s.solver_vars(iv)) # directly calling the API, has to be with native variables

observe how we first map the CPMpy variables to native variables by calling s.solver_vars(), and then give these to the native solver API directly. This is in fact what happens behind the scenes when posting a DirectConstraint, or any CPMpy constraint.

While directly calling the solver offers a lot of freedom, it is a bit more cumbersome as you have to map the variables manually each time. Also, you no longer have a declarative model that you can pass along, print or inspect. In contrast, a DirectConstraint is a CPMpy expression so its use is identical to other constraints.

Core expressions (cpmpy.expressions.core)

The Expression superclass and common subclasses Expression and Operator.

None of these objects should be directly created, they are automatically created through operator
overloading on variables and expressions.

Here is a list of standard python operators and what object (with what expr.name) it creates:

Comparisons:

	x == y Comparison(“==”, x, y)

	x != y Comparison(“!=”, x, y)

	x < y Comparison(“<”, x, y)

	x <= y Comparison(“<=”, x, y)

	x > y Comparison(“>”, x, y)

	x >= y Comparison(“>=”, x, y)

Mathematical operators:

	
	-x

	Operator(“-”, [x])

	x + y Operator(“sum”, [x,y])

	sum([x,y,z]) Operator(“sum”, [x,y,z])

	sum([c0*x, c1*y, c2*z]) Operator(“wsum”, [[c0,c1,c2],[x,y,z]])

	x - y Operator(“sum”, [x,-y])

	x * y Operator(“mul”, [x,y])

	x / y Operator(“div”, [x,y])

	x % y Operator(“mod”, [x,y])

	x ** y Operator(“pow”, [x,y])

Logical operators:

	x & y Operator(“and”, [x,y])

	x | y Operator(“or”, [x,y])

	
	~x Operator(“not”, [x])
	or NegBoolView(x) in case x is a Boolean variable

	x ^ y Xor([x,y]) # a global constraint

Python has no built-in operator for __implication__ that can be overloaded.
CPMpy hence has a function ‘implies()’ that can be called:

	x.implies(y) Operator(“->”, [x,y])

Apart from operator overloading, expressions implement two important functions:

	
	is_bool() which returns whether the __return type__ of the expression is Boolean.
	If it does, the expression can be used as top-level constraint
or in logical operators.

	
	value() computes the value of this expression, by calling .value() on its
	subexpressions and doing the appropriate computation
this is used to conveniently print variable values, objective values
and any other expression value (e.g. during debugging).

List of classes

	Expression

	An Expression represents a symbolic function with a self.name and self.args (arguments)

	Comparison

	Represents a comparison between two sub-expressions

	Operator

	All kinds of mathematical and logical operators on expressions

	
class cpmpy.expressions.core.BoolVal(arg)

	Wrapper for python or numpy BoolVals

	
deepcopy(memodict={})

	

	
get_bounds()

	

	
implies(other)

	

	
is_bool()

	is it a Boolean (return type) Operator?
Default: yes

	
set_description(txt, override_print=True, full_print=False)

	

	
value()

	

	
class cpmpy.expressions.core.Comparison(name, left, right)

	Represents a comparison between two sub-expressions

	
allowed = {'!=', '<', '<=', '==', '>', '>='}

	

	
deepcopy(memodict={})

	

	
get_bounds()

	

	
implies(other)

	

	
is_bool()

	is it a Boolean (return type) Operator?
Default: yes

	
set_description(txt, override_print=True, full_print=False)

	

	
value()

	

	
class cpmpy.expressions.core.Expression(name, arg_list)

	An Expression represents a symbolic function with a self.name and self.args (arguments)

	Each Expression is considered to be a function whose value can be used
	in other expressions

Expressions may implement:
- is_bool(): whether its return type is Boolean
- value(): the value of the expression, default None
- implies(x): logical implication of this expression towards x
- __repr__(): for pretty printing the expression
- any __op__ python operator overloading

	
deepcopy(memodict={})

	

	
get_bounds()

	

	
implies(other)

	

	
is_bool()

	is it a Boolean (return type) Operator?
Default: yes

	
set_description(txt, override_print=True, full_print=False)

	

	
value()

	

	
class cpmpy.expressions.core.Operator(name, arg_list)

	All kinds of mathematical and logical operators on expressions

Convention for 2-ary operators: if one of the two is a constant,
it is stored first (as expr[0]), this eases weighted sum detection

	
allowed = {'-': (1, False), '->': (2, True), 'and': (0, True), 'div': (2, False), 'mod': (2, False), 'mul': (2, False), 'not': (1, True), 'or': (0, True), 'pow': (2, False), 'sub': (2, False), 'sum': (0, False), 'wsum': (2, False)}

	

	
deepcopy(memodict={})

	

	
get_bounds()

	Returns an estimate of lower and upper bound of the expression.
These bounds are safe: all possible values for the expression agree with the bounds.
These bounds are not tight: it may be possible that the bound itself is not a possible value for the expression.

	
implies(other)

	

	
is_bool()

	is it a Boolean (return type) Operator?

	
printmap = {'div': '//', 'mul': '*', 'sub': '-', 'sum': '+'}

	

	
set_description(txt, override_print=True, full_print=False)

	

	
value()

	

Global Constraints (cpmpy.expressions.globalconstraints)

Global constraints conveniently express non-primitive constraints.

Using global constraints

Solvers can have specialised implementations for global constraints. CPMpy has GlobalConstraint
expressions so that they can be passed to the solver as is when supported.

If a solver does not support a global constraint (see solvers/) then it will be automatically
decomposed by calling its .decompose() function.
The .decompose() function returns two arguments:

	a list of simpler constraints replacing the global constraint

	
	if the decomposition introduces new variables, then the second argument has to be a list
	of constraints that (totally) define those new variables

As a user you should almost never subclass GlobalConstraint() unless you know of a solver that
supports that specific global constraint, and that you will update its solver interface to support it.

For all other use cases, it sufficies to write your own helper function that immediately returns the
decomposition, e.g.:

def alldifferent_except0(args):
 return [((var1!= 0) & (var2 != 0)).implies(var1 != var2) for var1, var2 in all_pairs(args)]

Numeric global constraints

CPMpy also implements __Numeric Global Constraints__. For these, the CPMpy GlobalConstraint does not
exactly match what is implemented in the solver, but for good reason!!

For example solvers may implement the global constraint Minimum(iv1, iv2, iv3) == iv4 through an API
call addMinimumEquals([iv1,iv2,iv3], iv4).

However, CPMpy also wishes to support the expressions Minimum(iv1, iv2, iv3) > iv4 as well as
iv4 + Minimum(iv1, iv2, iv3).

Hence, the CPMpy global constraint only captures the Minimum(iv1, iv2, iv3) part, whose return type
is numeric and can be used in any other CPMpy expression. Only at the time of transforming the CPMpy
model to the solver API, will the expressions be decomposed and auxiliary variables introduced as needed
such that the solver only receives Minimum(iv1, iv2, iv3) == ivX expressions.
This is the burden of the CPMpy framework, not of the user who wants to express a problem formulation.

Subclassing GlobalConstraint

If you do wish to add a GlobalConstraint, because it is supported by solvers or because you will do
advanced analysis and rewriting on it, then preferably define it with a standard decomposition, e.g.:

class my_global(GlobalConstraint):
 def __init__(self, args):
 super().__init__("my_global", args)

 def decompose(self):
 return [self.args[0] != self.args[1]] # your decomposition

If it is a __numeric global constraint__ meaning that its return type is numeric (see Minimum and Element)
then set is_bool=False in the super() constructor and preferably implement .value() accordingly.

Alternative decompositions

For advanced use cases where you want to use another decomposition than the standard decomposition
of a GlobalConstraint expression, you can overwrite the ‘decompose’ function of the class, e.g.:

def my_circuit_decomp(self):
 return [self.args[0] == 1], [] # does not actually enforce circuit
circuit.decompose = my_circuit_decomp # attach it, no brackets!

vars = intvar(1,9, shape=10)
constr = circuit(vars)

Model(constr).solve()

The above will use ‘my_circuit_decomp’, if the solver does not
natively support ‘circuit’.

List of classes

	AllDifferent

	All arguments have a different (distinct) value

	AllDifferentExcept0

	All nonzero arguments have a distinct value

	AllEqual

	All arguments have the same value

	Circuit

	The sequence of variables form a circuit, where x[i] = j means that j is the successor of i.

	Inverse

	Inverse (aka channeling / assignment) constraint.

	Table

	The values of the variables in 'array' correspond to a row in 'table'

	Xor

	The 'xor' exclusive-or constraint

	Cumulative

	Global cumulative constraint.

	GlobalCardinalityCount

	GlobalCardinalityCount(vars,vals,occ): The number of occurrences of each value vals[i] in the list of variables vars must be equal to occ[i].

	
class cpmpy.expressions.globalconstraints.AllDifferent(*args)

	All arguments have a different (distinct) value

	
decompose()

	Returns the decomposition

	
deepcopy(memodict={})

	

	
get_bounds()

	Returns the bounds of a Boolean global constraint.
Numerical global constraints should reimplement this.

	
implies(other)

	

	
is_bool()

	is it a Boolean (return type) Operator?

	
set_description(txt, override_print=True, full_print=False)

	

	
value()

	

	
class cpmpy.expressions.globalconstraints.AllDifferentExcept0(*args)

	All nonzero arguments have a distinct value

	
decompose()

	Returns a decomposition into smaller constraints.

The decomposition might create auxiliary variables
and use other global constraints as long as
it does not create a circular dependency.

To ensure equivalence of decomposition, we split into contraining and defining constraints.
Defining constraints (totally) define new auxiliary variables needed for the decomposition,
they can always be enforced top-level.

	
deepcopy(memodict={})

	

	
get_bounds()

	Returns the bounds of a Boolean global constraint.
Numerical global constraints should reimplement this.

	
implies(other)

	

	
is_bool()

	is it a Boolean (return type) Operator?

	
set_description(txt, override_print=True, full_print=False)

	

	
value()

	

	
class cpmpy.expressions.globalconstraints.AllEqual(*args)

	All arguments have the same value

	
decompose()

	Returns the decomposition

	
deepcopy(memodict={})

	

	
get_bounds()

	Returns the bounds of a Boolean global constraint.
Numerical global constraints should reimplement this.

	
implies(other)

	

	
is_bool()

	is it a Boolean (return type) Operator?

	
set_description(txt, override_print=True, full_print=False)

	

	
value()

	

	
class cpmpy.expressions.globalconstraints.Circuit(*args)

	The sequence of variables form a circuit, where x[i] = j means that j is the successor of i.

	
decompose()

	Decomposition for Circuit

Not sure where we got it from,
MiniZinc has slightly different one:
https://github.com/MiniZinc/libminizinc/blob/master/share/minizinc/std/fzn_circuit.mzn

	
deepcopy(memodict={})

	

	
get_bounds()

	Returns the bounds of a Boolean global constraint.
Numerical global constraints should reimplement this.

	
implies(other)

	

	
is_bool()

	is it a Boolean (return type) Operator?

	
set_description(txt, override_print=True, full_print=False)

	

	
value()

	

	
class cpmpy.expressions.globalconstraints.Cumulative(start, duration, end, demand, capacity)

	Global cumulative constraint. Used for resource aware scheduling.
Ensures no overlap between tasks and never exceeding the capacity of the resource
Supports both varying demand across tasks or equal demand for all jobs

	
decompose()

	Time-resource decomposition from:
Schutt, Andreas, et al. “Why cumulative decomposition is not as bad as it sounds.”
International Conference on Principles and Practice of Constraint Programming. Springer, Berlin, Heidelberg, 2009.

	
deepcopy(memodict={})

	

	
get_bounds()

	Returns the bounds of a Boolean global constraint.
Numerical global constraints should reimplement this.

	
implies(other)

	

	
is_bool()

	is it a Boolean (return type) Operator?

	
set_description(txt, override_print=True, full_print=False)

	

	
value()

	

	
class cpmpy.expressions.globalconstraints.DirectConstraint(name, arguments, novar=None)

	A DirectConstraint will directly call a function of the underlying solver when added to a CPMpy solver

It can not be reified, it is not flattened, it can not contain other CPMpy expressions than variables.
When added to a CPMpy solver, it will literally just directly call a function on the underlying solver,
replacing CPMpy variables by solver variables along the way.

See the documentation of the solver (constructor) for details on how that solver handles them.

If you want/need to use what the solver returns (e.g. an identifier for use in other constraints),
then use directvar() instead, or access the solver object from the solver interface directly.

	
callSolver(CPMpy_solver, Native_solver)

	
Call the `directname`() function of the native solver,
with stored arguments replacing CPMpy variables with solver variables as needed.

SolverInterfaces will call this function when this constraint is added.

	Parameters

	
	CPMpy_solver – a CPM_solver object, that has a solver_vars() function

	Native_solver – the python interface to some specific solver

	Returns

	the response of the solver when calling the function

	
deepcopy(memodict={})

	

	
get_bounds()

	

	
implies(other)

	

	
is_bool()

	is it a Boolean (return type) Operator?

	
set_description(txt, override_print=True, full_print=False)

	

	
value()

	

	
class cpmpy.expressions.globalconstraints.GlobalCardinalityCount(vars, vals, occ)

	GlobalCardinalityCount(vars,vals,occ): The number of occurrences of each value vals[i] in the list of variables vars
must be equal to occ[i].

	
decompose()

	Returns a decomposition into smaller constraints.

The decomposition might create auxiliary variables
and use other global constraints as long as
it does not create a circular dependency.

To ensure equivalence of decomposition, we split into contraining and defining constraints.
Defining constraints (totally) define new auxiliary variables needed for the decomposition,
they can always be enforced top-level.

	
deepcopy(memodict={})

	

	
get_bounds()

	Returns the bounds of a Boolean global constraint.
Numerical global constraints should reimplement this.

	
implies(other)

	

	
is_bool()

	is it a Boolean (return type) Operator?

	
set_description(txt, override_print=True, full_print=False)

	

	
value()

	

	
class cpmpy.expressions.globalconstraints.GlobalConstraint(name, arg_list)

	Abstract superclass of GlobalConstraints

Like all expressions it has a .name and .args property.
Overwrites the .is_bool() method.

	
decompose()

	Returns a decomposition into smaller constraints.

The decomposition might create auxiliary variables
and use other global constraints as long as
it does not create a circular dependency.

To ensure equivalence of decomposition, we split into contraining and defining constraints.
Defining constraints (totally) define new auxiliary variables needed for the decomposition,
they can always be enforced top-level.

	
deepcopy(memodict={})

	

	
get_bounds()

	Returns the bounds of a Boolean global constraint.
Numerical global constraints should reimplement this.

	
implies(other)

	

	
is_bool()

	is it a Boolean (return type) Operator?

	
set_description(txt, override_print=True, full_print=False)

	

	
value()

	

	
class cpmpy.expressions.globalconstraints.IfThenElse(condition, if_true, if_false)

	
	
decompose()

	Returns a decomposition into smaller constraints.

The decomposition might create auxiliary variables
and use other global constraints as long as
it does not create a circular dependency.

To ensure equivalence of decomposition, we split into contraining and defining constraints.
Defining constraints (totally) define new auxiliary variables needed for the decomposition,
they can always be enforced top-level.

	
deepcopy(memodict={})

	

	
get_bounds()

	Returns the bounds of a Boolean global constraint.
Numerical global constraints should reimplement this.

	
implies(other)

	

	
is_bool()

	is it a Boolean (return type) Operator?

	
set_description(txt, override_print=True, full_print=False)

	

	
value()

	

	
class cpmpy.expressions.globalconstraints.InDomain(expr, arr)

	The “InDomain” constraint, defining non-interval domains for an expression

	
decompose()

	
	Returns two lists of constraints:
	
	constraints representing the comparison

	constraints that (totally) define new auxiliary variables needed in the decomposition,
they should be enforced toplevel.

	
deepcopy(memodict={})

	

	
get_bounds()

	Returns the bounds of a Boolean global constraint.
Numerical global constraints should reimplement this.

	
implies(other)

	

	
is_bool()

	is it a Boolean (return type) Operator?

	
set_description(txt, override_print=True, full_print=False)

	

	
value()

	

	
class cpmpy.expressions.globalconstraints.Inverse(fwd, rev)

	Inverse (aka channeling / assignment) constraint. ‘fwd’ and
‘rev’ represent inverse functions; that is,

fwd[i] == x <==> rev[x] == i

	
decompose()

	Returns a decomposition into smaller constraints.

The decomposition might create auxiliary variables
and use other global constraints as long as
it does not create a circular dependency.

To ensure equivalence of decomposition, we split into contraining and defining constraints.
Defining constraints (totally) define new auxiliary variables needed for the decomposition,
they can always be enforced top-level.

	
deepcopy(memodict={})

	

	
get_bounds()

	Returns the bounds of a Boolean global constraint.
Numerical global constraints should reimplement this.

	
implies(other)

	

	
is_bool()

	is it a Boolean (return type) Operator?

	
set_description(txt, override_print=True, full_print=False)

	

	
value()

	

	
class cpmpy.expressions.globalconstraints.Table(array, table)

	The values of the variables in ‘array’ correspond to a row in ‘table’

	
decompose()

	Returns a decomposition into smaller constraints.

The decomposition might create auxiliary variables
and use other global constraints as long as
it does not create a circular dependency.

To ensure equivalence of decomposition, we split into contraining and defining constraints.
Defining constraints (totally) define new auxiliary variables needed for the decomposition,
they can always be enforced top-level.

	
deepcopy(memodict={})

	

	
get_bounds()

	Returns the bounds of a Boolean global constraint.
Numerical global constraints should reimplement this.

	
implies(other)

	

	
is_bool()

	is it a Boolean (return type) Operator?

	
set_description(txt, override_print=True, full_print=False)

	

	
value()

	

	
class cpmpy.expressions.globalconstraints.Xor(arg_list)

	The ‘xor’ exclusive-or constraint

	
decompose()

	Returns a decomposition into smaller constraints.

The decomposition might create auxiliary variables
and use other global constraints as long as
it does not create a circular dependency.

To ensure equivalence of decomposition, we split into contraining and defining constraints.
Defining constraints (totally) define new auxiliary variables needed for the decomposition,
they can always be enforced top-level.

	
deepcopy(memodict={})

	

	
get_bounds()

	Returns the bounds of a Boolean global constraint.
Numerical global constraints should reimplement this.

	
implies(other)

	

	
is_bool()

	is it a Boolean (return type) Operator?

	
set_description(txt, override_print=True, full_print=False)

	

	
value()

	

	
cpmpy.expressions.globalconstraints.alldifferent(args)

	

	
cpmpy.expressions.globalconstraints.allequal(args)

	

	
cpmpy.expressions.globalconstraints.circuit(args)

	

Python builtin overwrites (cpmpy.expressions.python_builtins)

Overwrites a number of python built-ins, so that they work over variables as expected.

List of functions

	all

	all() overwrites python built-in, if iterable contains an Expression, then returns an Operator("and", iterable) otherwise returns whether all of the arguments is true

	any

	any() overwrites python built-in, if iterable contains an Expression, then returns an Operator("or", iterable) otherwise returns whether any of the arguments is true

	max

	max() overwrites python built-in, checks if all constants and computes np.max() in that case

	min

	min() overwrites python built-in, checks if all constants and computes np.min() in that case

	sum

	sum() overwrites python built-in, checks if all constants and computes np.sum() in that case otherwise, makes a sum Operator directly on iterable

	
cpmpy.expressions.python_builtins.all(iterable)

	all() overwrites python built-in,
if iterable contains an Expression, then returns an Operator(“and”, iterable)
otherwise returns whether all of the arguments is true

	
cpmpy.expressions.python_builtins.any(iterable)

	any() overwrites python built-in,
if iterable contains an Expression, then returns an Operator(“or”, iterable)
otherwise returns whether any of the arguments is true

	
cpmpy.expressions.python_builtins.max(iterable)

	max() overwrites python built-in,
checks if all constants and computes np.max() in that case

	
cpmpy.expressions.python_builtins.min(iterable)

	min() overwrites python built-in,
checks if all constants and computes np.min() in that case

	
cpmpy.expressions.python_builtins.sum(iterable)

	sum() overwrites python built-in,
checks if all constants and computes np.sum() in that case
otherwise, makes a sum Operator directly on iterable

Expression utilities (cpmpy.expressions.utils)

Internal utilities for expression handling.

	is_int

	can it be interpreted as an integer? (incl bool and numpy variants)

	is_num

	is it an int or float? (incl numpy variants)

	is_pure_list

	is it a list or tuple?

	is_any_list

	is it a list or tuple or numpy array?

	flatlist

	recursively flatten arguments into one single list

	all_pairs

	returns all pairwise combinations of elements in args

	argval

	returns .value() of Expression, otherwise the variable itself

	eval_comparison

	Internal function: evaluates the textual str_op comparison operator lhs <str_op> rhs

	
cpmpy.expressions.utils.all_pairs(args)

	returns all pairwise combinations of elements in args

	
cpmpy.expressions.utils.argval(a)

	returns .value() of Expression, otherwise the variable itself

We check with hasattr instead of isinstance to avoid circular dependency

	
cpmpy.expressions.utils.eval_comparison(str_op, lhs, rhs)

	Internal function: evaluates the textual str_op comparison operator
lhs <str_op> rhs

Valid str_op’s:
* ‘==’
* ‘!=’
* ‘>’
* ‘>=’
* ‘<’
* ‘<=’

Especially useful in decomposition and transformation functions that already involve a comparison.

	
cpmpy.expressions.utils.flatlist(args)

	recursively flatten arguments into one single list

	
cpmpy.expressions.utils.get_bounds(expr)

	return the bounds of the expression
returns appropriately rounded integers

	
cpmpy.expressions.utils.is_any_list(arg)

	is it a list or tuple or numpy array?

	
cpmpy.expressions.utils.is_bool(arg)

	is it a boolean (incl numpy variants)

	
cpmpy.expressions.utils.is_boolexpr(expr)

	is the argument a boolean expression or a boolean value

	
cpmpy.expressions.utils.is_false_cst(arg)

	is the argument the constant False (can be of type bool, np.bool and BoolVal)

	
cpmpy.expressions.utils.is_int(arg)

	can it be interpreted as an integer? (incl bool and numpy variants)

	
cpmpy.expressions.utils.is_num(arg)

	is it an int or float? (incl numpy variants)

	
cpmpy.expressions.utils.is_pure_list(arg)

	is it a list or tuple?

	
cpmpy.expressions.utils.is_true_cst(arg)

	is the argument the constant True (can be of type bool, np.bool and BoolVal)

Decision Variables (cpmpy.expressions.variables)

Integer and Boolean decision variables (as n-dimensional numpy objects)

List of functions

	boolvar

	Boolean decision variables will take either the value True or False.

	intvar

	Integer decision variables are constructed by specifying the lowest (lb) the decision variable can take, as well as the highest value (ub).

	cpm_array

	N-dimensional wrapper, to wrap standard numpy arrays or lists.

Module description

A decision variable is a variable whose value will be determined by the solver.

Boolean and Integer decision variables are the key elements of a CP model.

All variables in CPMpy are n-dimensional array objects and have defined dimensions. Following the numpy library, the dimension sizes of an n-dimenionsal array is called its __shape__. In CPMpy all variables are considered an array with a given shape. For ‘single’ variables the shape is ‘1’. For an array of length n the shape is ‘n’. An n*m matrix has shape (n,m), and tensors with more than 2 dimensions are all supported too. For the implementation of this, CPMpy builts on numpy’s n-dimensional ndarray and inherits many of its benefits (vectorized operators and advanced indexing).

This module contains the cornerstone boolvar() and intvar() functions, which create (numpy arrays of) variables. There is also a helper function cpm_array for wrapping standard numpy arrays so they can be indexed by a variable. Apart from these 3 functions, none of the classes in this module should be directly created; they are created by these 3 helper functions.

List of classes

	NullShapeError

	Error returned when providing an empty or size 0 shape for numpy arrays of variables

	_NumVarImpl

	Abstract continuous numerical variable with given lowerbound and upperbound.

	_IntVarImpl

	Integer variable with given lowerbound and upperbound.

	_BoolVarImpl

	Boolean variable with given lowerbound and upperbound.

	NegBoolView

	Represents not(var), not an actual variable implementation!

	NDVarArray

	N-dimensional numpy array of variables.

Module details

	
cpmpy.expressions.variables.BoolVar(shape=1, name=None)

	

	
cpmpy.expressions.variables.IntVar(lb, ub, shape=1, name=None)

	

	
class cpmpy.expressions.variables.NDVarArray(shape, **kwargs)

	N-dimensional numpy array of variables.

Do not create this object directly, use one of the functions in this module

	
T

	The transposed array.

Same as self.transpose().

Examples

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[1., 2.],
 [3., 4.]])
>>> x.T
array([[1., 3.],
 [2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])

See Also

transpose

	
all(axis=None, out=None)

	overwrite np.any(NDVarArray)

	
any(axis=None, out=None)

	overwrite np.any(NDVarArray)

	
argmax(axis=None, out=None)

	Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

See Also

numpy.argmax : equivalent function

	
argmin(axis=None, out=None)

	Return indices of the minimum values along the given axis.

Refer to numpy.argmin for detailed documentation.

See Also

numpy.argmin : equivalent function

	
argpartition(kth, axis=-1, kind='introselect', order=None)

	Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

See Also

numpy.argpartition : equivalent function

	
argsort(axis=-1, kind=None, order=None)

	Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

See Also

numpy.argsort : equivalent function

	
astype(dtype, order='K', casting='unsafe', subok=True, copy=True)

	Copy of the array, cast to a specified type.

Parameters

	dtypestr or dtype
	Typecode or data-type to which the array is cast.

	order{‘C’, ‘F’, ‘A’, ‘K’}, optional
	Controls the memory layout order of the result.
‘C’ means C order, ‘F’ means Fortran order, ‘A’
means ‘F’ order if all the arrays are Fortran contiguous,
‘C’ order otherwise, and ‘K’ means as close to the
order the array elements appear in memory as possible.
Default is ‘K’.

	casting{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional
	Controls what kind of data casting may occur. Defaults to ‘unsafe’
for backwards compatibility.

	‘no’ means the data types should not be cast at all.

	‘equiv’ means only byte-order changes are allowed.

	‘safe’ means only casts which can preserve values are allowed.

	‘same_kind’ means only safe casts or casts within a kind,
like float64 to float32, are allowed.

	‘unsafe’ means any data conversions may be done.

	subokbool, optional
	If True, then sub-classes will be passed-through (default), otherwise
the returned array will be forced to be a base-class array.

	copybool, optional
	By default, astype always returns a newly allocated array. If this
is set to false, and the dtype, order, and subok
requirements are satisfied, the input array is returned instead
of a copy.

Returns

	arr_tndarray
	Unless copy is False and the other conditions for returning the input
array are satisfied (see description for copy input parameter), arr_t
is a new array of the same shape as the input array, with dtype, order
given by dtype, order.

Notes

Changed in version 1.17.0: Casting between a simple data type and a structured one is possible only
for “unsafe” casting. Casting to multiple fields is allowed, but
casting from multiple fields is not.

Changed in version 1.9.0: Casting from numeric to string types in ‘safe’ casting mode requires
that the string dtype length is long enough to store the max
integer/float value converted.

Raises

	ComplexWarning
	When casting from complex to float or int. To avoid this,
one should use a.real.astype(t).

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

	
base

	Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

	
byteswap(inplace=False)

	Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by
returning a byteswapped array, optionally swapped in-place.
Arrays of byte-strings are not swapped. The real and imaginary
parts of a complex number are swapped individually.

Parameters

	inplacebool, optional
	If True, swap bytes in-place, default is False.

Returns

	outndarray
	The byteswapped array. If inplace is True, this is
a view to self.

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> list(map(hex, A))
['0x1', '0x100', '0x2233']
>>> A.byteswap(inplace=True)
array([256, 1, 13090], dtype=int16)
>>> list(map(hex, A))
['0x100', '0x1', '0x3322']

Arrays of byte-strings are not swapped

>>> A = np.array([b'ceg', b'fac'])
>>> A.byteswap()
array([b'ceg', b'fac'], dtype='|S3')

	A.newbyteorder().byteswap() produces an array with the same values
	but different representation in memory

>>> A = np.array([1, 2, 3])
>>> A.view(np.uint8)
array([1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0,
 0, 0], dtype=uint8)
>>> A.newbyteorder().byteswap(inplace=True)
array([1, 2, 3])
>>> A.view(np.uint8)
array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,
 0, 3], dtype=uint8)

	
choose(choices, out=None, mode='raise')

	Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See Also

numpy.choose : equivalent function

	
clear()

	clear, for each of the stored variables, the value obtained from the last solve call

	
clip(min=None, max=None, out=None, **kwargs)

	Return an array whose values are limited to [min, max].
One of max or min must be given.

Refer to numpy.clip for full documentation.

See Also

numpy.clip : equivalent function

	
compress(condition, axis=None, out=None)

	Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

See Also

numpy.compress : equivalent function

	
conj()

	Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

See Also

numpy.conjugate : equivalent function

	
conjugate()

	Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

See Also

numpy.conjugate : equivalent function

	
copy(order='C')

	Return a copy of the array.

Parameters

	order{‘C’, ‘F’, ‘A’, ‘K’}, optional
	Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible. (Note that this function and numpy.copy() are very
similar but have different default values for their order=
arguments, and this function always passes sub-classes through.)

See also

numpy.copy : Similar function with different default behavior
numpy.copyto

Notes

This function is the preferred method for creating an array copy. The
function numpy.copy() is similar, but it defaults to using order ‘K’,
and will not pass sub-classes through by default.

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],
 [0, 0, 0]])

>>> y
array([[1, 2, 3],
 [4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

	
ctypes

	An object to simplify the interaction of the array with the ctypes
module.

This attribute creates an object that makes it easier to use arrays
when calling shared libraries with the ctypes module. The returned
object has, among others, data, shape, and strides attributes (see
Notes below) which themselves return ctypes objects that can be used
as arguments to a shared library.

Parameters

None

Returns

	cPython object
	Possessing attributes data, shape, strides, etc.

See Also

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented
in “Guide to NumPy” (we have omitted undocumented public attributes,
as well as documented private attributes):

	
_ctypes.data

	A pointer to the memory area of the array as a Python integer.
This memory area may contain data that is not aligned, or not in correct
byte-order. The memory area may not even be writeable. The array
flags and data-type of this array should be respected when passing this
attribute to arbitrary C-code to avoid trouble that can include Python
crashing. User Beware! The value of this attribute is exactly the same
as self._array_interface_['data'][0].

Note that unlike data_as, a reference will not be kept to the array:
code like ctypes.c_void_p((a + b).ctypes.data) will result in a
pointer to a deallocated array, and should be spelt
(a + b).ctypes.data_as(ctypes.c_void_p)

	
_ctypes.shape

	(c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the C-integer corresponding to dtype('p') on this
platform. This base-type could be ctypes.c_int, ctypes.c_long, or
ctypes.c_longlong depending on the platform.
The c_intp type is defined accordingly in numpy.ctypeslib.
The ctypes array contains the shape of the underlying array.

	
_ctypes.strides

	(c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the same as for the shape attribute. This ctypes array
contains the strides information from the underlying array. This strides
information is important for showing how many bytes must be jumped to
get to the next element in the array.

	
_ctypes.data_as(obj)

	Return the data pointer cast to a particular c-types object.
For example, calling self._as_parameter_ is equivalent to
self.data_as(ctypes.c_void_p). Perhaps you want to use the data as a
pointer to a ctypes array of floating-point data:
self.data_as(ctypes.POINTER(ctypes.c_double)).

The returned pointer will keep a reference to the array.

	
_ctypes.shape_as(obj)

	Return the shape tuple as an array of some other c-types
type. For example: self.shape_as(ctypes.c_short).

	
_ctypes.strides_as(obj)

	Return the strides tuple as an array of some other
c-types type. For example: self.strides_as(ctypes.c_longlong).

If the ctypes module is not available, then the ctypes attribute
of array objects still returns something useful, but ctypes objects
are not returned and errors may be raised instead. In particular,
the object will still have the as_parameter attribute which will
return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x = np.array([[0, 1], [2, 3]], dtype=np.int32)
>>> x
array([[0, 1],
 [2, 3]], dtype=int32)
>>> x.ctypes.data
31962608 # may vary
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32))
<__main__.LP_c_uint object at 0x7ff2fc1fc200> # may vary
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32)).contents
c_uint(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint64)).contents
c_ulong(4294967296)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x7ff2fc1fce60> # may vary
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x7ff2fc1ff320> # may vary

	
cumprod(axis=None, dtype=None, out=None)

	Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

See Also

numpy.cumprod : equivalent function

	
cumsum(axis=None, dtype=None, out=None)

	Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

See Also

numpy.cumsum : equivalent function

	
data

	Python buffer object pointing to the start of the array’s data.

	
deepcopy(memodict={})

	

	
diagonal(offset=0, axis1=0, axis2=1)

	Return specified diagonals. In NumPy 1.9 the returned array is a
read-only view instead of a copy as in previous NumPy versions. In
a future version the read-only restriction will be removed.

Refer to numpy.diagonal() for full documentation.

See Also

numpy.diagonal : equivalent function

	
dot(b, out=None)

	Dot product of two arrays.

Refer to numpy.dot for full documentation.

See Also

numpy.dot : equivalent function

Examples

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2., 2.],
 [2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[8., 8.],
 [8., 8.]])

	
dtype

	Data-type of the array’s elements.

Parameters

None

Returns

d : numpy dtype object

See Also

numpy.dtype

Examples

>>> x
array([[0, 1],
 [2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

	
dump(file)

	Dump a pickle of the array to the specified file.
The array can be read back with pickle.load or numpy.load.

Parameters

	filestr or Path
	A string naming the dump file.

Changed in version 1.17.0: pathlib.Path objects are now accepted.

	
dumps()

	Returns the pickle of the array as a string.
pickle.loads or numpy.loads will convert the string back to an array.

Parameters

None

	
fill(value)

	Fill the array with a scalar value.

Parameters

	valuescalar
	All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

	
flags

	Information about the memory layout of the array.

Attributes

	C_CONTIGUOUS (C)
	The data is in a single, C-style contiguous segment.

	F_CONTIGUOUS (F)
	The data is in a single, Fortran-style contiguous segment.

	OWNDATA (O)
	The array owns the memory it uses or borrows it from another object.

	WRITEABLE (W)
	The data area can be written to. Setting this to False locks
the data, making it read-only. A view (slice, etc.) inherits WRITEABLE
from its base array at creation time, but a view of a writeable
array may be subsequently locked while the base array remains writeable.
(The opposite is not true, in that a view of a locked array may not
be made writeable. However, currently, locking a base object does not
lock any views that already reference it, so under that circumstance it
is possible to alter the contents of a locked array via a previously
created writeable view onto it.) Attempting to change a non-writeable
array raises a RuntimeError exception.

	ALIGNED (A)
	The data and all elements are aligned appropriately for the hardware.

	WRITEBACKIFCOPY (X)
	This array is a copy of some other array. The C-API function
PyArray_ResolveWritebackIfCopy must be called before deallocating
to the base array will be updated with the contents of this array.

	UPDATEIFCOPY (U)
	(Deprecated, use WRITEBACKIFCOPY) This array is a copy of some other array.
When this array is
deallocated, the base array will be updated with the contents of
this array.

	FNC
	F_CONTIGUOUS and not C_CONTIGUOUS.

	FORC
	F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

	BEHAVED (B)
	ALIGNED and WRITEABLE.

	CARRAY (CA)
	BEHAVED and C_CONTIGUOUS.

	FARRAY (FA)
	BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

Notes

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']),
or by using lowercased attribute names (as in a.flags.writeable). Short flag
names are only supported in dictionary access.

Only the WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be
changed by the user, via direct assignment to the attribute or dictionary
entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

	UPDATEIFCOPY can only be set False.

	WRITEBACKIFCOPY can only be set False.

	ALIGNED can only be set True if the data is truly aligned.

	WRITEABLE can only be set True if the array owns its own memory
or the ultimate owner of the memory exposes a writeable buffer
interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously.
This is clear for 1-dimensional arrays, but can also be true for higher
dimensional arrays.

Even for contiguous arrays a stride for a given dimension
arr.strides[dim] may be arbitrary if arr.shape[dim] == 1
or the array has no elements.
It does not generally hold that self.strides[-1] == self.itemsize
for C-style contiguous arrays or self.strides[0] == self.itemsize for
Fortran-style contiguous arrays is true.

	
flat

	A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not
a subclass of, Python’s built-in iterator object.

See Also

flatten : Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],
 [4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],
 [2, 5],
 [3, 6]])
>>> x.T.flat[3]
5
>>> type(x.flat)
<class 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],
 [3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],
 [3, 1, 3]])

	
flatten(order='C')

	Return a copy of the array collapsed into one dimension.

Parameters

	order{‘C’, ‘F’, ‘A’, ‘K’}, optional
	‘C’ means to flatten in row-major (C-style) order.
‘F’ means to flatten in column-major (Fortran-
style) order. ‘A’ means to flatten in column-major
order if a is Fortran contiguous in memory,
row-major order otherwise. ‘K’ means to flatten
a in the order the elements occur in memory.
The default is ‘C’.

Returns

	yndarray
	A copy of the input array, flattened to one dimension.

See Also

ravel : Return a flattened array.
flat : A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

	
get_bounds()

	

	
getfield(dtype, offset=0)

	Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in
the view are determined by the given type and the offset into the current
array in bytes. The offset needs to be such that the view dtype fits in the
array dtype; for example an array of dtype complex128 has 16-byte elements.
If taking a view with a 32-bit integer (4 bytes), the offset needs to be
between 0 and 12 bytes.

Parameters

	dtypestr or dtype
	The data type of the view. The dtype size of the view can not be larger
than that of the array itself.

	offsetint
	Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],
 [0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],
 [0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the
array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],
 [0., 4.]])

	
imag

	The imaginary part of the array.

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

	
implies(other)

	

	
is_bool()

	is it a Boolean (return type) Operator?

	
item(*args)

	Copy an element of an array to a standard Python scalar and return it.

Parameters

*args : Arguments (variable number and type)

	none: in this case, the method only works for arrays
with one element (a.size == 1), which element is
copied into a standard Python scalar object and returned.

	int_type: this argument is interpreted as a flat index into
the array, specifying which element to copy and return.

	tuple of int_types: functions as does a single int_type argument,
except that the argument is interpreted as an nd-index into the
array.

Returns

	zStandard Python scalar object
	A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns
a scalar array object because there is no available Python scalar that
would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar,
a standard Python scalar is returned. This can be useful for speeding up
access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples

>>> np.random.seed(123)
>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[2, 2, 6],
 [1, 3, 6],
 [1, 0, 1]])
>>> x.item(3)
1
>>> x.item(7)
0
>>> x.item((0, 1))
2
>>> x.item((2, 2))
1

	
itemset(*args)

	Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument
as item. Then, a.itemset(*args) is equivalent to but faster
than a[args] = item. The item should be a scalar value and args
must select a single item in the array a.

Parameters

	*argsArguments
	If one argument: a scalar, only used in case a is of size 1.
If two arguments: the last argument is the value to be set
and must be a scalar, the first argument specifies a single array
element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, itemset provides some speed increase
for placing a scalar into a particular location in an ndarray,
if you must do this. However, generally this is discouraged:
among other problems, it complicates the appearance of the code.
Also, when using itemset (and item) inside a loop, be sure
to assign the methods to a local variable to avoid the attribute
look-up at each loop iteration.

Examples

>>> np.random.seed(123)
>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[2, 2, 6],
 [1, 3, 6],
 [1, 0, 1]])
>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[2, 2, 6],
 [1, 0, 6],
 [1, 0, 9]])

	
itemsize

	Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

	
max(axis=None, out=None)

	overwrite np.max(NDVarArray) as people might use it

	
mean(axis=None, dtype=None, out=None, keepdims=False, *, where=True)

	Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

See Also

numpy.mean : equivalent function

	
min(axis=None, out=None)

	overwrite np.min(NDVarArray) as people might use it

	
nbytes

	Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the
array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

	
ndim

	Number of array dimensions.

Examples

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

	
newbyteorder(new_order='S', /)

	Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data
type.

Parameters

	new_orderstring, optional
	Byte order to force; a value from the byte order specifications
below. new_order codes can be any of:

	‘S’ - swap dtype from current to opposite endian

	{‘<’, ‘little’} - little endian

	{‘>’, ‘big’} - big endian

	‘=’ - native order, equivalent to sys.byteorder

	{‘|’, ‘I’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current
byte order.

Returns

	new_arrarray
	New array object with the dtype reflecting given change to the
byte order.

	
nonzero()

	Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

See Also

numpy.nonzero : equivalent function

	
partition(kth, axis=-1, kind='introselect', order=None)

	Rearranges the elements in the array in such a way that the value of the
element in kth position is in the position it would be in a sorted array.
All elements smaller than the kth element are moved before this element and
all equal or greater are moved behind it. The ordering of the elements in
the two partitions is undefined.

New in version 1.8.0.

Parameters

	kthint or sequence of ints
	Element index to partition by. The kth element value will be in its
final sorted position and all smaller elements will be moved before it
and all equal or greater elements behind it.
The order of all elements in the partitions is undefined.
If provided with a sequence of kth it will partition all elements
indexed by kth of them into their sorted position at once.

	axisint, optional
	Axis along which to sort. Default is -1, which means sort along the
last axis.

	kind{‘introselect’}, optional
	Selection algorithm. Default is ‘introselect’.

	orderstr or list of str, optional
	When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can
be specified as a string, and not all fields need to be specified,
but unspecified fields will still be used, in the order in which
they come up in the dtype, to break ties.

See Also

numpy.partition : Return a parititioned copy of an array.
argpartition : Indirect partition.
sort : Full sort.

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(3)
>>> a
array([2, 1, 3, 4])

>>> a.partition((1, 3))
>>> a
array([1, 2, 3, 4])

	
prod(axis=None, out=None)

	overwrite np.prod(NDVarArray) as people might use it

	
ptp(axis=None, out=None, keepdims=False)

	Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

See Also

numpy.ptp : equivalent function

	
put(indices, values, mode='raise')

	Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

See Also

numpy.put : equivalent function

	
ravel([order])

	Return a flattened array.

Refer to numpy.ravel for full documentation.

See Also

numpy.ravel : equivalent function

ndarray.flat : a flat iterator on the array.

	
real

	The real part of the array.

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

See Also

numpy.real : equivalent function

	
repeat(repeats, axis=None)

	Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See Also

numpy.repeat : equivalent function

	
reshape(shape, order='C')

	Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See Also

numpy.reshape : equivalent function

Notes

Unlike the free function numpy.reshape, this method on ndarray allows
the elements of the shape parameter to be passed in as separate arguments.
For example, a.reshape(10, 11) is equivalent to
a.reshape((10, 11)).

	
resize(new_shape, refcheck=True)

	Change shape and size of array in-place.

Parameters

	new_shapetuple of ints, or n ints
	Shape of resized array.

	refcheckbool, optional
	If False, reference count will not be checked. Default is True.

Returns

None

Raises

	ValueError
	If a does not own its own data or references or views to it exist,
and the data memory must be changed.
PyPy only: will always raise if the data memory must be changed, since
there is no reliable way to determine if references or views to it
exist.

	SystemError
	If the order keyword argument is specified. This behaviour is a
bug in NumPy.

See Also

resize : Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be
resized.

The purpose of the reference count check is to make sure you
do not use this array as a buffer for another Python object and then
reallocate the memory. However, reference counts can increase in
other ways so if you are sure that you have not shared the memory
for this array with another Python object, then you may safely set
refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are
stored in memory), resized, and reshaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],
 [1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],
 [2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],
 [3, 0, 0]])

Referencing an array prevents resizing…

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that references or is referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

	
round(decimals=0, out=None)

	Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See Also

numpy.around : equivalent function

	
searchsorted(v, side='left', sorter=None)

	Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See Also

numpy.searchsorted : equivalent function

	
set_description(txt, override_print=True, full_print=False)

	

	
setfield(val, dtype, offset=0)

	Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dtype and beginning offset
bytes into the field.

Parameters

	valobject
	Value to be placed in field.

	dtypedtype object
	Data-type of the field in which to place val.

	offsetint, optional
	The number of bytes into the field at which to place val.

Returns

None

See Also

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])
>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],
 [3, 3, 3],
 [3, 3, 3]], dtype=int32)
>>> x
array([[1.0e+000, 1.5e-323, 1.5e-323],
 [1.5e-323, 1.0e+000, 1.5e-323],
 [1.5e-323, 1.5e-323, 1.0e+000]])
>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

	
setflags(write=None, align=None, uic=None)

	Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY),
respectively.

These Boolean-valued flags affect how numpy interprets the memory
area used by a (see Notes below). The ALIGNED flag can only
be set to True if the data is actually aligned according to the type.
The WRITEBACKIFCOPY and (deprecated) UPDATEIFCOPY flags can never be set
to True. The flag WRITEABLE can only be set to True if the array owns its
own memory, or the ultimate owner of the memory exposes a writeable buffer
interface, or is a string. (The exception for string is made so that
unpickling can be done without copying memory.)

Parameters

	writebool, optional
	Describes whether or not a can be written to.

	alignbool, optional
	Describes whether or not a is aligned properly for its type.

	uicbool, optional
	Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used
for the array is to be interpreted. There are 7 Boolean flags
in use, only four of which can be changed by the user:
WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware
(as determined by the compiler);

UPDATEIFCOPY (U) (deprecated), replaced by WRITEBACKIFCOPY;

WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced
by .base). When the C-API function PyArray_ResolveWritebackIfCopy is
called, the base array will be updated with the contents of this array.

All flags can be accessed using the single (upper case) letter as well
as the full name.

Examples

>>> y = np.array([[3, 1, 7],
... [2, 0, 0],
... [8, 5, 9]])
>>> y
array([[3, 1, 7],
 [2, 0, 0],
 [8, 5, 9]])
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : True
 ALIGNED : True
 WRITEBACKIFCOPY : False
 UPDATEIFCOPY : False
>>> y.setflags(write=0, align=0)
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : False
 ALIGNED : False
 WRITEBACKIFCOPY : False
 UPDATEIFCOPY : False
>>> y.setflags(uic=1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: cannot set WRITEBACKIFCOPY flag to True

	
shape

	Tuple of array dimensions.

The shape property is usually used to get the current shape of an array,
but may also be used to reshape the array in-place by assigning a tuple of
array dimensions to it. As with numpy.reshape, one of the new shape
dimensions can be -1, in which case its value is inferred from the size of
the array and the remaining dimensions. Reshaping an array in-place will
fail if a copy is required.

Examples

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.]])
>>> y.shape = (3, 6)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged
>>> np.zeros((4,2))[::2].shape = (-1,)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: Incompatible shape for in-place modification. Use
`.reshape()` to make a copy with the desired shape.

See Also

numpy.reshape : similar function
ndarray.reshape : similar method

	
size

	Number of elements in the array.

Equal to np.prod(a.shape), i.e., the product of the array’s
dimensions.

Notes

a.size returns a standard arbitrary precision Python integer. This
may not be the case with other methods of obtaining the same value
(like the suggested np.prod(a.shape), which returns an instance
of np.int_), and may be relevant if the value is used further in
calculations that may overflow a fixed size integer type.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

	
sort(axis=-1, kind=None, order=None)

	Sort an array in-place. Refer to numpy.sort for full documentation.

Parameters

	axisint, optional
	Axis along which to sort. Default is -1, which means sort along the
last axis.

	kind{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional
	Sorting algorithm. The default is ‘quicksort’. Note that both ‘stable’
and ‘mergesort’ use timsort under the covers and, in general, the
actual implementation will vary with datatype. The ‘mergesort’ option
is retained for backwards compatibility.

Changed in version 1.15.0: The ‘stable’ option was added.

	orderstr or list of str, optional
	When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can
be specified as a string, and not all fields need be specified,
but unspecified fields will still be used, in the order in which
they come up in the dtype, to break ties.

See Also

numpy.sort : Return a sorted copy of an array.
numpy.argsort : Indirect sort.
numpy.lexsort : Indirect stable sort on multiple keys.
numpy.searchsorted : Find elements in sorted array.
numpy.partition: Partial sort.

Notes

See numpy.sort for notes on the different sorting algorithms.

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],
 [1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],
 [1, 4]])

Use the order keyword to specify a field to use when sorting a
structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([(b'c', 1), (b'a', 2)],
 dtype=[('x', 'S1'), ('y', '<i8')])

	
squeeze(axis=None)

	Remove axes of length one from a.

Refer to numpy.squeeze for full documentation.

See Also

numpy.squeeze : equivalent function

	
std(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)

	Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

See Also

numpy.std : equivalent function

	
strides

	Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a
is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the
“ndarray.rst” file in the NumPy reference guide.

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other
(known as a contiguous block of memory). The strides of an array tell
us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to
move to the next column, but 20 bytes (5 values) to get to the same
position in the next row. As such, the strides for the array x will be
(20, 4).

See Also

numpy.lib.stride_tricks.as_strided

Examples

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],
 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]]])
>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

	
sum(axis=None, out=None)

	overwrite np.sum(NDVarArray) as people might use it

	
swapaxes(axis1, axis2)

	Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See Also

numpy.swapaxes : equivalent function

	
take(indices, axis=None, out=None, mode='raise')

	Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See Also

numpy.take : equivalent function

	
tobytes(order='C')

	Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of
data memory. The bytes object is produced in C-order by default.
This behavior is controlled by the order parameter.

New in version 1.9.0.

Parameters

	order{‘C’, ‘F’, ‘A’}, optional
	Controls the memory layout of the bytes object. ‘C’ means C-order,
‘F’ means F-order, ‘A’ (short for Any) means ‘F’ if a is
Fortran contiguous, ‘C’ otherwise. Default is ‘C’.

Returns

	sbytes
	Python bytes exhibiting a copy of a’s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]], dtype='<u2')
>>> x.tobytes()
b'\x00\x00\x01\x00\x02\x00\x03\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x02\x00\x01\x00\x03\x00'

	
tofile(fid, sep='', format='%s')

	Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a.
The data produced by this method can be recovered using the function
fromfile().

Parameters

	fidfile or str or Path
	An open file object, or a string containing a filename.

Changed in version 1.17.0: pathlib.Path objects are now accepted.

	sepstr
	Separator between array items for text output.
If “” (empty), a binary file is written, equivalent to
file.write(a.tobytes()).

	formatstr
	Format string for text file output.
Each entry in the array is formatted to text by first converting
it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data.
Information on endianness and precision is lost, so this method is not a
good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome
by outputting the data as text files, at the expense of speed and file
size.

When fid is a file object, array contents are directly written to the
file, bypassing the file object’s write method. As a result, tofile
cannot be used with files objects supporting compression (e.g., GzipFile)
or file-like objects that do not support fileno() (e.g., BytesIO).

	
tolist()

	Return the array as an a.ndim-levels deep nested list of Python scalars.

Return a copy of the array data as a (nested) Python list.
Data items are converted to the nearest compatible builtin Python type, via
the ~numpy.ndarray.item function.

If a.ndim is 0, then since the depth of the nested list is 0, it will
not be a list at all, but a simple Python scalar.

Parameters

none

Returns

	yobject, or list of object, or list of list of object, or …
	The possibly nested list of array elements.

Notes

The array may be recreated via a = np.array(a.tolist()), although this
may sometimes lose precision.

Examples

For a 1D array, a.tolist() is almost the same as list(a),
except that tolist changes numpy scalars to Python scalars:

>>> a = np.uint32([1, 2])
>>> a_list = list(a)
>>> a_list
[1, 2]
>>> type(a_list[0])
<class 'numpy.uint32'>
>>> a_tolist = a.tolist()
>>> a_tolist
[1, 2]
>>> type(a_tolist[0])
<class 'int'>

Additionally, for a 2D array, tolist applies recursively:

>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

The base case for this recursion is a 0D array:

>>> a = np.array(1)
>>> list(a)
Traceback (most recent call last):
 ...
TypeError: iteration over a 0-d array
>>> a.tolist()
1

	
tostring(order='C')

	A compatibility alias for tobytes, with exactly the same behavior.

Despite its name, it returns bytes not strs.

Deprecated since version 1.19.0.

	
trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)

	Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See Also

numpy.trace : equivalent function

	
transpose(*axes)

	Returns a view of the array with axes transposed.

For a 1-D array this has no effect, as a transposed vector is simply the
same vector. To convert a 1-D array into a 2D column vector, an additional
dimension must be added. np.atleast2d(a).T achieves this, as does
a[:, np.newaxis].
For a 2-D array, this is a standard matrix transpose.
For an n-D array, if axes are given, their order indicates how the
axes are permuted (see Examples). If axes are not provided and
a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then
a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]).

Parameters

axes : None, tuple of ints, or n ints

	None or no argument: reverses the order of the axes.

	tuple of ints: i in the j-th place in the tuple means a’s
i-th axis becomes a.transpose()’s j-th axis.

	n ints: same as an n-tuple of the same ints (this form is
intended simply as a “convenience” alternative to the tuple form)

Returns

	outndarray
	View of a, with axes suitably permuted.

See Also

transpose : Equivalent function
ndarray.T : Array property returning the array transposed.
ndarray.reshape : Give a new shape to an array without changing its data.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
 [3, 4]])
>>> a.transpose()
array([[1, 3],
 [2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],
 [2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
 [2, 4]])

	
value()

	the values, for each of the stored variables, obtained in the last solve call
(or ‘None’)

	
var(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)

	Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

See Also

numpy.var : equivalent function

	
view([dtype][, type])

	New view of array with the same data.

Note

Passing None for dtype is different from omitting the parameter,
since the former invokes dtype(None) which is an alias for
dtype('float_').

Parameters

	dtypedata-type or ndarray sub-class, optional
	Data-type descriptor of the returned view, e.g., float32 or int16.
Omitting it results in the view having the same data-type as a.
This argument can also be specified as an ndarray sub-class, which
then specifies the type of the returned object (this is equivalent to
setting the type parameter).

	typePython type, optional
	Type of the returned view, e.g., ndarray or matrix. Again, omission
of the parameter results in type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view
of the array’s memory with a different data-type. This can cause a
reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just
returns an instance of ndarray_subclass that looks at the same array
(same shape, dtype, etc.) This does not cause a reinterpretation of the
memory.

For a.view(some_dtype), if some_dtype has a different number of
bytes per entry than the previous dtype (for example, converting a
regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown
by print(a)). It also depends on exactly how a is stored in
memory. Therefore if a is C-ordered versus fortran-ordered, versus
defined as a slice or transpose, etc., the view may give different
results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],
 [3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> x
array([(1, 20), (3, 4)], dtype=[('a', 'i1'), ('b', 'i1')])

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1, 3], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be
avoided on arrays defined by slices, transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],
 [4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
 ...
ValueError: To change to a dtype of a different size, the array must be C-contiguous
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],
 [(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

	
class cpmpy.expressions.variables.NegBoolView(bv)

	Represents not(var), not an actual variable implementation!

It stores a link to var’s _BoolVarImpl

Do not create this object directly, use the ~ operator instead: ~bv

	
clear()

	clear, for the viewed variable, the value obtained from the last solve call

	
counter = 0

	

	
deepcopy(memodict={})

	

	
get_bounds()

	the lower and upper bounds

	
implies(other)

	

	
is_bool()

	is it a Boolean (return type) Operator?

	
set_description(txt, override_print=True, full_print=False)

	

	
value()

	the negation of the value obtained in the last solve call by the viewed variable
(or ‘None’)

	
exception cpmpy.expressions.variables.NullShapeError(shape, message='Shape should be non-zero')

	Error returned when providing an empty or size 0 shape for numpy arrays of variables

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
cpmpy.expressions.variables.boolvar(shape=1, name=None)

	Boolean decision variables will take either the value True or False.

Arguments:
shape – the shape of the n-dimensional array of variables (int or tuple of ints, default: 1)
name – name to give to the variables (string, default: None)

If name is None then a name ‘BV<unique number>’ will be assigned to it.

If shape is different from 1, then each element of the array will have the location
of this specific variable in the array append to its name.

For example, print(boolvar(shape=3, name=”x”)) will print [x[0], x[1], x[2]]

The following examples show how to create Boolean variables of different shapes:

	
	Creating a single (unit-sized or scalar) Boolean variable:
	# creation of a unit Boolean variable
x = boolvar(name="x")

	the creation of a vector boolean variables.

creation of a vector of size 3 of Boolean variables
x = boolvar(shape=3, name="x")

note that with Python's unpacking, you can assign them
to intermediate variables. This allows for fine-grained use of variables when
defining the constraints of the model
e, x, a, m, p, l = boolvar(shape=6)

	
	the creation of a matrix or higher-order tensor of Boolean variables.
	# creation of a 9x9 matrix of Boolean variables:
matrix = boolvar(shape=(9, 9), name="matrix")

creation of a __tensor of Boolean variables where (3, 8, 7) reflects
the dimensions of the tensor, a matrix of multiple-dimensions.
In this case, we create an 3D-array of dimensions 3 x 8 x 7.
tensor = BoolVar(shape=(3, 8, 7), name="tensor")

	
cpmpy.expressions.variables.cparray(arr)

	

	
cpmpy.expressions.variables.cpm_array(arr)

	N-dimensional wrapper, to wrap standard numpy arrays or lists.

In CP modeling languages, indexing an array by an integer variable is common, e.g. [1,2,3,4][var1] == var2.
This is called an __element__ constraint. Python does not allow expressing it on standard arrays,
but CPMpy-numpy arrays do allow it, so you first have to wrap the array.

Note that ‘arr’ will be transformed to vector and indexed as such, 2-dimensional indexing is not supported (yet?).

Transforming a given numpy-array **m** into a cparray

iv1, iv2 = intvar(0, 9, shape=2)

data = [1, 2, 3, 4]
data = cpm_array(data)

Model([data[iv1] == iv2])

As an alternative, you can also write the Element constraint directly on data: Element(data, iv1) == iv2

	
cpmpy.expressions.variables.intvar(lb, ub, shape=1, name=None)

	Integer decision variables are constructed by specifying the lowest (lb)
the decision variable can take, as well as the highest value (ub).

Arguments:
lb – lower bound on the values the variable can take (int)
ub – upper bound on the values the variable can take (int)
shape – the shape of the n-dimensional array of variables (int or tuple of ints, default: 1)
name – name to give to the variables (string, default: None)

The range of values between lb..ub is called the __domain__ of the integer variable.
All variables in an array start from the same domain.
Specific values in the domain of individual variables can be forbidden with constraints.

If name is None then a name ‘IV<unique number>’ will be assigned to it.

If shape is different from 1, then each element of the array will have the location
of this specific variable in the array append to its name.

The following examples show how to create integer variables of different shapes:

	Creation of a single (unit-sized or scalar) integer variable with a given lower bound (lb) of 3 and upper bound (ub) 8. Variable x can thus take values 3, 4, 5, 6, 7, 8 (upper bound included!).

creation of a unit integer variable with lowerbound of 3 and upperbound of 8
x = intvar(3, 8, name="x")

	Creation of a vector of integer variables with all having the same given lower bound and upper bound:

creation of a vector Boolean of 5 variables with lowerbound of 3 and upperbound of 8
x = intvar(3, 8, shape=5, name="x")

Python's unpacking can assign multiple intermediate variables at once
e, x, a, m, p, l = intvar(3, 8, shape=5)

	
	Creation of a 4D-array/tensor (of dimensions 100 x 100 x 100 x 100) of integer variables.
	arrx = intvar(3, 8, shape=(100, 100, 100, 100), name="arrx")

CPMpy exact interface (cpmpy.solvers.exact)

Interface to Exact

Exact solves decision and optimization problems formulated as integer linear programs. Under the hood, it converts integer variables to binary (0-1) variables and applies highly efficient propagation routines and strong cutting-planes / pseudo-Boolean conflict analysis.

https://gitlab.com/JoD/exact

List of classes

	CPM_exact

	Interface to the Python interface of Exact

	
class cpmpy.solvers.exact.CPM_exact(cpm_model=None, subsolver=None)

	Interface to the Python interface of Exact

Requires that the ‘exact’ python package is installed:
$ pip install exact
See https://pypi.org/project/exact for more information.

	Creates the following attributes (see parent constructor for more):
	
	xct_solver: the Exact instance used in solve() and solveAll()

	assumption_dict: maps Exact variables to (Exact value, CPM assumption expression)

	to recover which expressions were in the core
	
	solver_is_initialized: whether xct_solver is initialized

	self.objective_given: whether an objective function is given to xct_solver

	self.objective_minimize: the direction of the optimization (if false then maximize)

as Exact can only minimize

	
static fix(o)

	

	
get_core()

	For use with s.solve(assumptions=[…]). Only meaningful if the solver returned UNSAT.

Typically implemented in SAT-based solvers

Returns a small subset of assumption literals that are unsat together.
(a literal is either a _BoolVarImpl or a NegBoolView in case of its negation, e.g. x or ~x)
Setting these literals to True makes the model UNSAT, setting any to False makes it SAT

	
has_objective()

	Returns whether the solver has an objective function or not.

	
maximize(expr)

	Post the given expression to the solver as objective to maximize

maximize() can be called multiple times, only the last one is stored

	
minimize(expr)

	Post the given expression to the solver as objective to minimize

minimize() can be called multiple times, only the last one is stored

	
objective(expr, minimize)

	Post the given expression to the solver as objective to minimize/maximize

	expr: Expression, the CPMpy expression that represents the objective function

	minimize: Bool, whether it is a minimization problem (True) or maximization problem (False)

‘objective()’ can only be called once

	
objective_value()

	
Returns the value of the objective function of the latest solver run on this model

	Returns

	an integer or ‘None’ if it is not run, or a satisfaction problem

	
solution_hint(cpm_vars, vals)

	
	Exact supports warmstarting the solver with a partial feasible assignment.
	Requires version >= 1.2.1

	Parameters

	
	cpm_vars – list of CPMpy variables

	vals – list of (corresponding) values for the variables

	
solve(time_limit=None, assumptions=None, **kwargs)

	Call Exact

Overwrites self.cpm_status

	Parameters

	
	assumptions (list of CPMpy Boolean variables) – CPMpy Boolean variables (or their negation) that are assumed to be true.
For repeated solving, and/or for use with s.get_core(): if the model is UNSAT,
get_core() returns a small subset of assumption variables that are unsat together.

	time_limit (int or float) – optional, time limit in seconds

Additional keyword arguments:
The Exact solver parameters are defined by https://gitlab.com/JoD/exact/-/blob/main/src/Options.hpp#L207

	Returns

	Bool:
- True if a solution is found (not necessarily optimal, e.g. could be after timeout)
- False if no solution is found

	
solveAll(display=None, time_limit=None, solution_limit=None, call_from_model=False, **kwargs)

	Compute all solutions and optionally display the solutions.

	Arguments:
	
	
	display: either a list of CPMpy expressions, OR a callback function, called with the variables after value-mapping
	default/None: nothing displayed

	time_limit: stop after this many seconds (default: None)

	solution_limit: stop after this many solutions (default: None)

	call_from_model: whether the method is called from a CPMpy Model instance or not

	any other keyword argument

Returns: number of solutions found

	
solver_var(cpm_var)

	Creates solver variable for cpmpy variable
or returns from cache if previously created

	
solver_vars(cpm_vars)

	Like solver_var() but for arbitrary shaped lists/tensors

	
status()

	

	
static supported()

	
Check for support in current system setup. Return True if the system
has package installed or supports solver, else returns False.

	Returns:
	[bool]: Solver support by current system setup.

	
transform(cpm_expr)

	Transform arbitrary CPMpy expressions to constraints the solver supports

Implemented through chaining multiple solver-independent transformation functions from
the cpmpy/transformations/ directory.

See the ‘Adding a new solver’ docs on readthedocs for more information.

	Parameters

	cpm_expr (Expression or list of Expression) – CPMpy expression, or list thereof

	Returns

	list of Expression

CPMpy gurobi interface (cpmpy.solvers.gurobi)

Interface to the python ‘gurobi’ package

Requires that the ‘gurobipy’ python package is installed:

$ pip install gurobipy

as well as the Gurobi bundled binary packages, downloadable from:
https://www.gurobi.com/

In contrast to other solvers in this package, Gurobi is not free to use and requires an active licence
You can read more about available licences at https://www.gurobi.com/downloads/

List of classes

	CPM_gurobi

	Interface to Gurobi's API

Module details

	
class cpmpy.solvers.gurobi.CPM_gurobi(cpm_model=None, subsolver=None)

	Interface to Gurobi’s API

Requires that the ‘gurobipy’ python package is installed:
$ pip install gurobipy

See detailed installation instructions at:
https://support.gurobi.com/hc/en-us/articles/360044290292-How-do-I-install-Gurobi-for-Python-

	Creates the following attributes (see parent constructor for more):
	
	grb_model: object, TEMPLATE’s model object

The DirectConstraint, when used, calls a function on the grb_model object.

	
get_core()

	For use with s.solve(assumptions=[…]). Only meaningful if the solver returned UNSAT.

Typically implemented in SAT-based solvers

Returns a small subset of assumption literals that are unsat together.
(a literal is either a _BoolVarImpl or a NegBoolView in case of its negation, e.g. x or ~x)
Setting these literals to True makes the model UNSAT, setting any to False makes it SAT

	
has_objective()

	Returns whether the solver has an objective function or not.

	
maximize(expr)

	Post the given expression to the solver as objective to maximize

maximize() can be called multiple times, only the last one is stored

	
minimize(expr)

	Post the given expression to the solver as objective to minimize

minimize() can be called multiple times, only the last one is stored

	
objective(expr, minimize=True)

	Post the given expression to the solver as objective to minimize/maximize

‘objective()’ can be called multiple times, only the last one is stored

	(technical side note: any constraints created during conversion of the objective
	are premanently posted to the solver)

	
objective_value()

	
Returns the value of the objective function of the latest solver run on this model

	Returns

	an integer or ‘None’ if it is not run, or a satisfaction problem

	
solution_hint(cpm_vars, vals)

	For warmstarting the solver with a variable assignment

Typically implemented in SAT-based solvers

	Parameters

	
	cpm_vars – list of CPMpy variables

	vals – list of (corresponding) values for the variables

	
solve(time_limit=None, solution_callback=None, **kwargs)

	Call the gurobi solver

Arguments:
- time_limit: maximum solve time in seconds (float, optional)
- kwargs: any keyword argument, sets parameters of solver object

Arguments that correspond to solver parameters:
Examples of gurobi supported arguments include:

	Threads : int

	MIPFocus: int

	ImproveStartTime : bool

	FlowCoverCuts: int

For a full list of gurobi parameters, please visit https://www.gurobi.com/documentation/9.5/refman/parameters.html#sec:Parameters

	
solveAll(display=None, time_limit=None, solution_limit=None, call_from_model=False, **kwargs)

	Compute all solutions and optionally display the solutions.

This is the generic implementation, solvers can overwrite this with
a more efficient native implementation

	Arguments:
	
	
	display: either a list of CPMpy expressions, OR a callback function, called with the variables after value-mapping
	default/None: nothing displayed

	time_limit: stop after this many seconds (default: None)

	solution_limit: stop after this many solutions (default: None)

	call_from_model: whether the method is called from a CPMpy Model instance or not

	any other keyword argument

Returns: number of solutions found

	
solver_var(cpm_var)

	Creates solver variable for cpmpy variable
or returns from cache if previously created

	
solver_vars(cpm_vars)

	Like solver_var() but for arbitrary shaped lists/tensors

	
status()

	

	
static supported()

	
Check for support in current system setup. Return True if the system
has package installed or supports solver, else returns False.

	Returns:
	[bool]: Solver support by current system setup.

	
transform(cpm_expr)

	
Transform arbitrary CPMpy expressions to constraints the solver supports

Implemented through chaining multiple solver-independent transformation functions from
the cpmpy/transformations/ directory.

See the ‘Adding a new solver’ docs on readthedocs for more information.

	Parameters

	cpm_expr (Expression or list of Expression) – CPMpy expression, or list thereof

	Returns

	list of Expression

CPMpy minizinc interface (cpmpy.solvers.minizinc)

Interface to MiniZinc’s Python API

CPMpy can translate CPMpy models to the (text-based) MiniZinc language.

MiniZinc is a free and open-source constraint modeling language.
MiniZinc is used to model constraint satisfaction and optimization problems in
a high-level, solver-independent way, taking advantage of a large library of
pre-defined constraints. The model is then compiled into FlatZinc, a solver input
language that is understood by a wide range of solvers.
https://www.minizinc.org

Documentation of the solver’s own Python API:
https://minizinc-python.readthedocs.io/

List of classes

	CPM_minizinc

	Interface to MiniZinc's Python API

	
class cpmpy.solvers.minizinc.CPM_minizinc(cpm_model=None, subsolver=None)

	Interface to MiniZinc’s Python API

Requires that the ‘minizinc’ python package is installed:
$ pip install minizinc

as well as the MiniZinc bundled binary packages, downloadable from:
https://www.minizinc.org/software.html

See detailed installation instructions at:
https://minizinc-python.readthedocs.io/en/latest/getting_started.html

Note for Jupyter users: MiniZinc uses AsyncIO, so using it in a jupyter notebook gives
you the following error: RuntimeError: asyncio.run() cannot be called from a running event loop
You can overcome this by pip install nest_asyncio
and adding in the top cell import nest_asyncio; nest_asyncio.apply()

	Creates the following attributes (see parent constructor for more):
	
	mzn_model: object, the minizinc.Model instance

	mzn_solver: object, the minizinc.Solver instance

	mzn_txt_solve: str, the ‘solve’ item in text form, so it can be overwritten

	mzn_result: object, containing solve results

The DirectConstraint, when used, adds a constraint with that name and the given args to the MiniZinc model.

	
get_core()

	For use with s.solve(assumptions=[…]). Only meaningful if the solver returned UNSAT.

Typically implemented in SAT-based solvers

Returns a small subset of assumption literals that are unsat together.
(a literal is either a _BoolVarImpl or a NegBoolView in case of its negation, e.g. x or ~x)
Setting these literals to True makes the model UNSAT, setting any to False makes it SAT

	
has_objective()

	Returns whether the solver has an objective function or not.

	
keywords = frozenset({'ann', 'annotation', 'any', 'array', 'bool', 'case', 'constraint', 'diff', 'div', 'else', 'elseif', 'endif', 'enum', 'false', 'float', 'function', 'if', 'in', 'include', 'int', 'intersect', 'let', 'list', 'maximize', 'minimize', 'mod', 'not', 'of', 'op', 'opt', 'output', 'par', 'predicate', 'record', 'satisfy', 'set', 'solve', 'string', 'subset', 'superset', 'symdiff', 'test', 'then', 'true', 'tuple', 'type', 'union', 'var', 'where', 'xor'})

	

	
maximize(expr)

	Post the given expression to the solver as objective to maximize

maximize() can be called multiple times, only the last one is stored

	
minimize(expr)

	Post the given expression to the solver as objective to minimize

minimize() can be called multiple times, only the last one is stored

	
mzn_name_pattern = re.compile('^[A-Za-z][A-Za-z0-9_]*$')

	

	
mzn_time_to_seconds(time)

	

	
objective(expr, minimize)

	Post the given expression to the solver as objective to minimize/maximize

	expr: Expression, the CPMpy expression that represents the objective function

	minimize: Bool, whether it is a minimization problem (True) or maximization problem (False)

‘objective()’ can be called multiple times, only the last one is stored

	
objective_value()

	
Returns the value of the objective function of the latest solver run on this model

	Returns

	an integer or ‘None’ if it is not run, or a satisfaction problem

	
solution_hint(cpm_vars, vals)

	For warmstarting the solver with a variable assignment

Typically implemented in SAT-based solvers

	Parameters

	
	cpm_vars – list of CPMpy variables

	vals – list of (corresponding) values for the variables

	
solve(time_limit=None, **kwargs)

	Call the MiniZinc solver

Creates and calls an Instance with the already created mzn_model and mzn_solver

Arguments:
- time_limit: maximum solve time in seconds (float, optional)
- kwargs: any keyword argument, sets parameters of solver object

	Arguments that correspond to solver parameters:
	
	free_search=True Allow the solver to ignore the search definition within the instance. (Only available when the -f flag is supported by the solver). (Default: 0)

	optimisation_level=0 Set the MiniZinc compiler optimisation level. (Default: 1; 0=none, 1=single pass, 2=double pass, 3=root node prop, 4,5=probing)

	… I am not sure where solver-specific arguments are documented, but the docs say that command line arguments can be passed by ommitting the ‘-’ (e.g. ‘f’ instead of ‘-f’)?

The minizinc solver parameters are partly defined in its API:
https://minizinc-python.readthedocs.io/en/latest/api.html#minizinc.instance.Instance.solve

Does not store the minizinc.Instance() or minizinc.Result()

	
solveAll(display=None, time_limit=None, solution_limit=None, call_from_model=False, **kwargs)

	Compute all solutions and optionally display the solutions.

MiniZinc-specific implementation

	Arguments:
	
	
	display: either a list of CPMpy expressions, OR a callback function, called with the variables after value-mapping
	default/None: nothing displayed

	time_limit: stop after this many seconds (default: None)

	solution_limit: stop after this many solutions (default: None)

	call_from_model: whether the method is called from a CPMpy Model instance or not

	any other keyword argument

Returns: number of solutions found

	
solver_var(cpm_var) → str

	Creates solver variable for cpmpy variable
or returns from cache if previously created

Returns minizinc-friendly ‘string’ name of var

XXX WARNING, this assumes it is never given a ‘NegBoolView’
might not be true… e.g. in revar after solve?

	
solver_vars(cpm_vars)

	Like solver_var() but for arbitrary shaped lists/tensors

	
static solvernames()

	Returns solvers supported by MiniZinc on your system

WARNING, some of them may not actually be installed on your system
(namely cplex, gurobi, scip, xpress)
the following are bundled in the bundle: chuffed, coin-bc, gecode

	
status()

	

	
static supported()

	
Check for support in current system setup. Return True if the system
has package installed or supports solver, else returns False.

	Returns:
	[bool]: Solver support by current system setup.

	
transform(cpm_expr)

	
Decompose globals not supported (and flatten globalfunctions)
ensure it is a list of constraints

	Parameters

	cpm_expr (Expression or list of Expression) – CPMpy expression, or list thereof

	Returns

	list of Expression

CPMpy ortools interface (cpmpy.solvers.ortools)

Interface to ortools’ CP-SAT Python API

Google OR-Tools is open source software for combinatorial optimization, which seeks
to find the best solution to a problem out of a very large set of possible solutions.
The OR-Tools CP-SAT solver is an award-winning constraint programming solver
that uses SAT (satisfiability) methods and lazy-clause generation.

Documentation of the solver’s own Python API:
https://google.github.io/or-tools/python/ortools/sat/python/cp_model.html

List of classes

	CPM_ortools

	Interface to the python 'ortools' CP-SAT API

	
class cpmpy.solvers.ortools.CPM_ortools(cpm_model=None, subsolver=None)

	Interface to the python ‘ortools’ CP-SAT API

Requires that the ‘ortools’ python package is installed:
$ pip install ortools

See detailed installation instructions at:
https://developers.google.com/optimization/install

	Creates the following attributes (see parent constructor for more):
	
	ort_model: the ortools.sat.python.cp_model.CpModel() created by _model()

	ort_solver: the ortools cp_model.CpSolver() instance used in solve()

The DirectConstraint, when used, calls a function on the ort_model object.

	
classmethod default_params()

	

	
get_core()

	For use with s.solve(assumptions=[…]). Only meaningful if the solver returned UNSAT.

Typically implemented in SAT-based solvers

Returns a small subset of assumption literals that are unsat together.
(a literal is either a _BoolVarImpl or a NegBoolView in case of its negation, e.g. x or ~x)
Setting these literals to True makes the model UNSAT, setting any to False makes it SAT

	
has_objective()

	Returns whether the solver has an objective function or not.

	
maximize(expr)

	Post the given expression to the solver as objective to maximize

maximize() can be called multiple times, only the last one is stored

	
minimize(expr)

	Post the given expression to the solver as objective to minimize

minimize() can be called multiple times, only the last one is stored

	
objective(expr, minimize)

	Post the given expression to the solver as objective to minimize/maximize

	expr: Expression, the CPMpy expression that represents the objective function

	minimize: Bool, whether it is a minimization problem (True) or maximization problem (False)

‘objective()’ can be called multiple times, only the last one is stored

(technical side note: any constraints created during conversion of the objective
are premanently posted to the solver)

	
objective_value()

	
Returns the value of the objective function of the latest solver run on this model

	Returns

	an integer or ‘None’ if it is not run, or a satisfaction problem

	
solution_hint(cpm_vars, vals)

	or-tools supports warmstarting the solver with a feasible solution

More specifically, it will branch that variable on that value first if possible. This is known as ‘phase saving’ in the SAT literature, but then extended to integer variables.

The solution hint does NOT need to satisfy all constraints, it should just provide reasonable default values for the variables. It can decrease solving times substantially, especially when solving a similar model repeatedly

	Parameters

	
	cpm_vars – list of CPMpy variables

	vals – list of (corresponding) values for the variables

	
solve(time_limit=None, assumptions=None, solution_callback=None, **kwargs)

	Call the CP-SAT solver

Arguments:
- time_limit: maximum solve time in seconds (float, optional)
- assumptions: list of CPMpy Boolean variables (or their negation) that are assumed to be true.

For repeated solving, and/or for use with s.get_core(): if the model is UNSAT,
get_core() returns a small subset of assumption variables that are unsat together.
Note: the or-tools interface is stateless, so you can incrementally call solve() with assumptions, but or-tools will always start from scratch…

	solution_callback: an ort.CpSolverSolutionCallback object. CPMpy includes its own, namely OrtSolutionCounter. If you want to count all solutions, don’t forget to also add the keyword argument ‘enumerate_all_solutions=True’.

Additional keyword arguments:
The ortools solver parameters are defined in its ‘sat_parameters.proto’ description:
https://github.com/google/or-tools/blob/stable/ortools/sat/sat_parameters.proto

You can use any of these parameters as keyword argument to solve() and they will
be forwarded to the solver. Examples include:

	num_search_workers=8 number of parallel workers (default: 8)

	log_search_progress=True to log the search process to stdout (default: False)

	cp_model_presolve=False to disable presolve (default: True, almost always beneficial)

	cp_model_probing_level=0 to disable probing (default: 2, also valid: 1, maybe 3, etc…)

	linearization_level=0 to disable linearisation (default: 1, can also set to 2)

	optimize_with_core=True to do max-sat like lowerbound optimisation (default: False)

	use_branching_in_lp=True to generate more info in lp propagator (default: False)

	polish_lp_solution=True to spend time in lp propagator searching integer values (default: False)

	symmetry_level=1 only do symmetry breaking in presolve (default: 2, also possible: 0)

example:
o.solve(num_search_workers=8, log_search_progress=True)

	
solveAll(display=None, time_limit=None, solution_limit=None, call_from_model=False, **kwargs)

	A shorthand to (efficiently) compute all solutions, map them to CPMpy and optionally display the solutions.

It is just a wrapper around the use of OrtSolutionPrinter() in fact.

	Arguments:
	
	
	display: either a list of CPMpy expressions, OR a callback function, called with the variables after value-mapping
	default/None: nothing displayed

	solution_limit: stop after this many solutions (default: None)

	call_from_model: whether the method is called from a CPMpy Model instance or not

Returns: number of solutions found

	
solver_var(cpm_var)

	Creates solver variable for cpmpy variable
or returns from cache if previously created

	
solver_vars(cpm_vars)

	Like solver_var() but for arbitrary shaped lists/tensors

	
status()

	

	
static supported()

	
Check for support in current system setup. Return True if the system
has package installed or supports solver, else returns False.

	Returns:
	[bool]: Solver support by current system setup.

	
transform(cpm_expr)

	
Transform arbitrary CPMpy expressions to constraints the solver supports

Implemented through chaining multiple solver-independent transformation functions from
the cpmpy/transformations/ directory.

See the ‘Adding a new solver’ docs on readthedocs for more information.

	Parameters

	cpm_expr (Expression or list of Expression) – CPMpy expression, or list thereof

	Returns

	list of Expression

	
classmethod tunable_params()

	Suggestion of tunable hyperparameters of the solver.
List compiled based on a conversation with OR-tools’ Laurent Perron (issue #138).

CPMpy pysat interface (cpmpy.solvers.pysat)

Interface to PySAT’s API

PySAT is a Python (2.7, 3.4+) toolkit, which aims at providing a simple and unified
interface to a number of state-of-art Boolean satisfiability (SAT) solvers as well as
to a variety of cardinality and pseudo-Boolean encodings.
https://pysathq.github.io/

This solver can be used if the model only has Boolean variables,
and only logical constraints (and,or,implies,==,!=) or cardinality constraints.

Documentation of the solver’s own Python API:
https://pysathq.github.io/docs/html/api/solvers.html

WARNING: CPMpy uses ‘model’ to refer to a constraint specification,
the PySAT docs use ‘model’ to refer to a solution.

List of classes

	CPM_pysat

	Interface to PySAT's API

	
class cpmpy.solvers.pysat.CPM_pysat(cpm_model=None, subsolver=None)

	Interface to PySAT’s API

Requires that the ‘python-sat’ python package is installed:
$ pip install python-sat

See detailed installation instructions at:
https://pysathq.github.io/installation.html

	Creates the following attributes (see parent constructor for more):
	
	pysat_vpool: a pysat.formula.IDPool for the variable mapping

	pysat_solver: a pysat.solver.Solver() (default: glucose4)

The DirectConstraint, when used, calls a function on the pysat_solver object.

	
get_core()

	For use with s.solve(assumptions=[…]). Only meaningful if the solver returned UNSAT. In that case, get_core() returns a small subset of assumption variables that are unsat together.

CPMpy will return only those assumptions which are False (in the UNSAT core)

Note that there is no guarantee that the core is minimal.
More advanced Minimal Unsatisfiable Subset are available in the ‘examples’ folder on GitHub

	
has_objective()

	Returns whether the solver has an objective function or not.

	
maximize(expr)

	Post the given expression to the solver as objective to maximize

maximize() can be called multiple times, only the last one is stored

	
minimize(expr)

	Post the given expression to the solver as objective to minimize

minimize() can be called multiple times, only the last one is stored

	
objective(expr, minimize)

	Post the given expression to the solver as objective to minimize/maximize

	expr: Expression, the CPMpy expression that represents the objective function

	minimize: Bool, whether it is a minimization problem (True) or maximization problem (False)

‘objective()’ can be called multiple times, only the last one is stored

	
objective_value()

	
Returns the value of the objective function of the latest solver run on this model

	Returns

	an integer or ‘None’ if it is not run, or a satisfaction problem

	
solution_hint(cpm_vars, vals)

	PySAT supports warmstarting the solver with a feasible solution

In PySAT, this is called setting the ‘phases’ or the ‘polarities’ of literals

	Parameters

	
	cpm_vars – list of CPMpy variables

	vals – list of (corresponding) values for the variables

	
solve(time_limit=None, assumptions=None)

	Call the PySAT solver

Arguments:
- time_limit: maximum solve time in seconds (float, optional). Auto-interrups in case the

runtime exceeds given time_limit.
Warning: the time_limit is not very accurate at subsecond level

	
	assumptions: list of CPMpy Boolean variables that are assumed to be true.
	For use with s.get_core(): if the model is UNSAT, get_core() returns a small subset of assumption variables that are unsat together.
Note: the PySAT interface is statefull, so you can incrementally call solve() with assumptions and it will reuse learned clauses

	
solveAll(display=None, time_limit=None, solution_limit=None, call_from_model=False, **kwargs)

	Compute all solutions and optionally display the solutions.

This is the generic implementation, solvers can overwrite this with
a more efficient native implementation

	Arguments:
	
	
	display: either a list of CPMpy expressions, OR a callback function, called with the variables after value-mapping
	default/None: nothing displayed

	time_limit: stop after this many seconds (default: None)

	solution_limit: stop after this many solutions (default: None)

	call_from_model: whether the method is called from a CPMpy Model instance or not

	any other keyword argument

Returns: number of solutions found

	
solver_var(cpm_var)

	Creates solver variable for cpmpy variable
or returns from cache if previously created

Transforms cpm_var into CNF literal using self.pysat_vpool
(positive or negative integer)

so vpool is the varmap (we don’t use _varmap here)

	
solver_vars(cpm_vars)

	Like solver_var() but for arbitrary shaped lists/tensors

	
static solvernames()

	Returns solvers supported by PySAT on your system

	
status()

	

	
static supported()

	
Check for support in current system setup. Return True if the system
has package installed or supports solver, else returns False.

	Returns:
	[bool]: Solver support by current system setup.

	
transform(cpm_expr)

	
Transform arbitrary CPMpy expressions to constraints the solver supports

Implemented through chaining multiple solver-independent transformation functions from
the cpmpy/transformations/ directory.

See the ‘Adding a new solver’ docs on readthedocs for more information.

	Parameters

	cpm_expr (Expression or list of Expression) – CPMpy expression, or list thereof

	Returns

	list of Expression

CPMpy pysdd interface (cpmpy.solvers.pysdd)

Interface to PySDD’s API

PySDD is a knowledge compilation package for Sentential Decision Diagrams (SDD)
https://pysdd.readthedocs.io/en/latest/

This solver can ONLY be used for solution checking and enumeration over Boolean variables!
That is, only logical constraints (and,or,implies,==,!=) and Boolean global constraints.

Documentation of the solver’s own Python API:
https://pysdd.readthedocs.io/en/latest/classes/SddManager.html

List of classes

	CPM_pysdd

	Interface to pysdd's API

	
class cpmpy.solvers.pysdd.CPM_pysdd(cpm_model=None, subsolver=None)

	Interface to pysdd’s API

Requires that the ‘PySDD’ python package is installed:
$ pip install pysdd

See detailed installation instructions at:
https://pysdd.readthedocs.io/en/latest/usage/installation.html

	Creates the following attributes (see parent constructor for more):
	
	pysdd_vtree: a pysdd.sdd.Vtree

	pysdd_manager: a pysdd.sdd.SddManager

	pysdd_root: a pysdd.sdd.SddNode (changes whenever a formula is added)

The DirectConstraint, when used, calls a function on the pysdd_manager object and replaces the root node with a conjunction of the previous root node and the result of this function call.

	
dot()

	Returns a graphviz Dot object

Display (in a notebook) with:
import graphviz
graphviz.Source(m.dot())

	
get_core()

	For use with s.solve(assumptions=[…]). Only meaningful if the solver returned UNSAT.

Typically implemented in SAT-based solvers

Returns a small subset of assumption literals that are unsat together.
(a literal is either a _BoolVarImpl or a NegBoolView in case of its negation, e.g. x or ~x)
Setting these literals to True makes the model UNSAT, setting any to False makes it SAT

	
has_objective()

	Returns whether the solver has an objective function or not.

	
maximize(expr)

	Post the given expression to the solver as objective to maximize

maximize() can be called multiple times, only the last one is stored

	
minimize(expr)

	Post the given expression to the solver as objective to minimize

minimize() can be called multiple times, only the last one is stored

	
objective(expr, minimize)

	Post the given expression to the solver as objective to minimize/maximize

	expr: Expression, the CPMpy expression that represents the objective function

	minimize: Bool, whether it is a minimization problem (True) or maximization problem (False)

‘objective()’ can be called multiple times, only the last one is stored

	
objective_value()

	
Returns the value of the objective function of the latest solver run on this model

	Returns

	an integer or ‘None’ if it is not run, or a satisfaction problem

	
solution_hint(cpm_vars, vals)

	For warmstarting the solver with a variable assignment

Typically implemented in SAT-based solvers

	Parameters

	
	cpm_vars – list of CPMpy variables

	vals – list of (corresponding) values for the variables

	
solve(time_limit=None, assumptions=None)

	See if an arbitrary model exists

	This is a knowledge compiler:
	
	building it is the (computationally) hard part

	checking for a solution is trivial after that

	
solveAll(display=None, time_limit=None, solution_limit=None, call_from_model=False, **kwargs)

	Compute all solutions and optionally display the solutions.

WARNING: setting ‘display’ will SIGNIFICANTLY slow down solution counting…

	Arguments:
	
	
	display: either a list of CPMpy expressions, OR a callback function, called with the variables after value-mapping
	default/None: nothing displayed

	time_limit, solution_limit, kwargs: not used

	call_from_model: whether the method is called from a CPMpy Model instance or not

Returns: number of solutions found

	
solver_var(cpm_var)

	Creates solver variable for cpmpy variable

	
solver_vars(cpm_vars)

	Like solver_var() but for arbitrary shaped lists/tensors

	
status()

	

	
static supported()

	
Check for support in current system setup. Return True if the system
has package installed or supports solver, else returns False.

	Returns:
	[bool]: Solver support by current system setup.

	
transform(cpm_expr)

	
Transform arbitrary CPMpy expressions to constraints the solver supports

Implemented through chaining multiple solver-independent transformation functions from
the cpmpy/transformations/ directory.

See the ‘Adding a new solver’ docs on readthedocs for more information.

For PySDD, it can be beneficial to add a big model (collection of constraints) at once…

	Parameters

	cpm_expr (Expression or list of Expression) – CPMpy expression, or list thereof

	Returns

	list of Expression

Solver utilities (cpmpy.solvers.utils)

Utilities for handling solvers

Contains a static variable builtin_solvers that lists
CPMpy solvers (first one is the default solver by default)

List of functions

	param_combinations

	Recursively yield all combinations of param values

	
class cpmpy.solvers.utils.SolverLookup

	
	
static base_solvers()

	Return ordered list of (name, class) of base CPMpy
solvers

First one is default

	
static get(name=None, model=None)

	get a specific solver (by name), with ‘model’ passed to its constructor

This is the preferred way to initialise a solver from its name

	
static lookup(name=None)

	lookup a solver _class_ by its name

warning: returns a ‘class’, not an object!
see get() for normal uses

	
static solvernames()

	

	
cpmpy.solvers.utils.get_supported_solvers()

	
Returns a list of solvers supported on this machine.

	Returns

	a list of SolverInterface sub-classes :list[SolverInterface]:

	
cpmpy.solvers.utils.param_combinations(all_params, remaining_keys=None, cur_params=None)

	Recursively yield all combinations of param values

For example usage, see examples/advanced/hyperparameter_search.py

	
	all_params is a dict of {key: list} items, e.g.:
	{‘val’: [1,2], ‘opt’: [True,False]}

	output is an generator over all {key:value} combinations
of the keys and values. For the example above:
generator([{‘val’:1,’opt’:True},{‘val’:1,’opt’:False},{‘val’:2,’opt’:True},{‘val’:2,’opt’:False}])

CPMpy z3 interface (cpmpy.solvers.z3)

Interface to z3’s API

Z3 is a highly versatile and effective theorem prover from Microsoft.
Underneath, it is an SMT solver with a wide scala of theory solvers.
We will interface to the finite-domain integer related parts of the API

Documentation of the solver’s own Python API:
https://z3prover.github.io/api/html/namespacez3py.html

Terminology note: a ‘model’ for z3 is a solution!

List of classes

	CPM_z3

	Interface to z3's API

	
class cpmpy.solvers.z3.CPM_z3(cpm_model=None, subsolver='sat')

	Interface to z3’s API

Requires that the ‘z3-solver’ python package is installed:
$ pip install z3-solver

See detailed installation instructions at:
https://github.com/Z3Prover/z3#python

	Creates the following attributes (see parent constructor for more):
	
	z3_solver: object, z3’s Solver() object

The DirectConstraint, when used, calls a function in the z3 namespace and z3_solver.add()’s the result.

	
get_core()

	For use with s.solve(assumptions=[…]). Only meaningful if the solver returned UNSAT. In that case, get_core() returns a small subset of assumption variables that are unsat together.

CPMpy will return only those variables that are False (in the UNSAT core)

Note that there is no guarantee that the core is minimal, though this interface does upon up the possibility to add more advanced Minimal Unsatisfiabile Subset algorithms on top. All contributions welcome!

	
has_objective()

	Returns whether the solver has an objective function or not.

	
maximize(expr)

	Post the given expression to the solver as objective to maximize

maximize() can be called multiple times, only the last one is stored

	
minimize(expr)

	Post the given expression to the solver as objective to minimize

minimize() can be called multiple times, only the last one is stored

	
objective(expr, minimize=True)

	Post the given expression to the solver as objective to minimize/maximize

‘objective()’ can be called multiple times, only the last one is stored

(technical side note: any constraints created during conversion of the objective
are premanently posted to the solver)

	
objective_value()

	
Returns the value of the objective function of the latest solver run on this model

	Returns

	an integer or ‘None’ if it is not run, or a satisfaction problem

	
solution_hint(cpm_vars, vals)

	For warmstarting the solver with a variable assignment

Typically implemented in SAT-based solvers

	Parameters

	
	cpm_vars – list of CPMpy variables

	vals – list of (corresponding) values for the variables

	
solve(time_limit=None, assumptions=[], **kwargs)

	Call the z3 solver

Arguments:
- time_limit: maximum solve time in seconds (float, optional)
- assumptions: list of CPMpy Boolean variables (or their negation) that are assumed to be true.

For repeated solving, and/or for use with s.get_core(): if the model is UNSAT,
get_core() returns a small subset of assumption variables that are unsat together.

	kwargs: any keyword argument, sets parameters of solver object

	Arguments that correspond to solver parameters:
	
	… (no common examples yet)

The full list doesn’t seem to be documented online, you have to run its help() function:
`
import z3
z3.Solver().help()
`

Warning! Some parameternames in z3 have a ‘.’ in their name,
such as (arbitrarily chosen): ‘sat.lookahead_simplify’
You have to construct a dictionary of keyword arguments upfront:
`
params = {"sat.lookahead_simplify": True}
s.solve(**params)
`

	
solveAll(display=None, time_limit=None, solution_limit=None, call_from_model=False, **kwargs)

	Compute all solutions and optionally display the solutions.

This is the generic implementation, solvers can overwrite this with
a more efficient native implementation

	Arguments:
	
	
	display: either a list of CPMpy expressions, OR a callback function, called with the variables after value-mapping
	default/None: nothing displayed

	time_limit: stop after this many seconds (default: None)

	solution_limit: stop after this many solutions (default: None)

	call_from_model: whether the method is called from a CPMpy Model instance or not

	any other keyword argument

Returns: number of solutions found

	
solver_var(cpm_var)

	Creates solver variable for cpmpy variable
or returns from cache if previously created

	
solver_vars(cpm_vars)

	Like solver_var() but for arbitrary shaped lists/tensors

	
status()

	

	
static supported()

	
Check for support in current system setup. Return True if the system
has package installed or supports solver, else returns False.

	Returns:
	[bool]: Solver support by current system setup.

	
transform(cpm_expr)

	
Transform arbitrary CPMpy expressions to constraints the solver supports

Implemented through chaining multiple solver-independent transformation functions from
the cpmpy/transformations/ directory.

See the ‘Adding a new solver’ docs on readthedocs for more information.

	Parameters

	cpm_expr (Expression or list of Expression) – CPMpy expression, or list thereof

	Returns

	list of Expression

Convert to Flat Normal Form (cpmpy.transformations.flatten_model)

Flattening a model (or individual constraints) into ‘flat normal form’.

In flat normal form, constraints belong to one of three families with all arguments
either constants, variables, list of constants or list of variables, and
some binary constraints have a canonical order of variables.

Furthermore, it is ‘negated normal’ meaning that the ~ (negation operator) only appears
before a Boolean variable (in CPMpy, absorbed in a ‘NegBoolView’),
and it is ‘negation normal’ meaning that the - (negative operator) only appears before
a constant, that is a - b :: a + -1*b :: wsum([1,-1],[a,b])

The three families of possible constraints are:

Base constraints: (no nesting)

	Boolean variable

	Boolean operators: and([Var]), or([Var]) (CPMpy class ‘Operator’, is_bool())

	Boolean impliciation: Var -> Var (CPMpy class ‘Operator’, is_bool())

	
	Boolean equality: Var == Var (CPMpy class ‘Comparison’)
	Var == Constant (CPMpy class ‘Comparison’)

	Global constraint (Boolean): global([Var]*) (CPMpy class ‘GlobalConstraint’, is_bool())

Comparison constraints: (up to one nesting on one side)

	
	Numeric equality: Numexpr == Var (CPMpy class ‘Comparison’)
	Numexpr == Constant (CPMpy class ‘Comparison’)

	
	Numeric disequality: Numexpr != Var (CPMpy class ‘Comparison’)
	Numexpr != Constant (CPMpy class ‘Comparison’)

	Numeric inequality (>=,>,<,<=): Numexpr >=< Var (CPMpy class ‘Comparison’)

Numexpr:

	
	Operator (non-Boolean) with all args Var/constant (examples: +,*,/,mod,wsum)
	(CPMpy class ‘Operator’, not is_bool())

	
	Global constraint (non-Boolean) (examples: Max,Min,Element)
	(CPMpy class ‘GlobalConstraint’, not is_bool()))

wsum: wsum([Const],[Var]) represents sum([Const]*[Var]) # TODO: not implemented yet

Reify/imply constraint: (up to two nestings on one side)

	Reification (double implication): Boolexpr == Var (CPMpy class ‘Comparison’)

	
	Implication: Boolexpr -> Var (CPMpy class ‘Operator’, is_bool())
	Var -> Boolexpr (CPMpy class ‘Operator’, is_bool())

Boolexpr:

	Boolean operators: and([Var]), or([Var]) (CPMpy class ‘Operator’, is_bool())

	Boolean equality: Var == Var (CPMpy class ‘Comparison’)

	Global constraint (Boolean): global([Var]*) (CPMpy class ‘GlobalConstraint’, is_bool())

	Comparison constraint (see above) (CPMpy class ‘Comparison’)

Reification of a comparison is the most complex case as it can allow up to 3 levels of nesting in total, e.g.:

	(wsum([1,2,3],[IV1,IV2,IV3]) > 5) == BV

	(IV1 == IV2) == BV

	(BV1 == BV2) == BV3

Objective: (up to one nesting)

	Satisfaction problem: None

	Decision variable: Var

	
	Linear: sum([Var]) (CPMpy class ‘Operator’, name ‘sum’)
	wsum([Const],[Var]) (CPMpy class ‘Operator’, name ‘wsum’)

The output after calling flatten_model() or flatten_constraint() will ONLY contain expressions
of the form specified above.

The flattening does not promise to do common subexpression elimination or to automatically group
commutative expressions (and, or, sum, wsum, …) but such optimisations should be added later.

TODO: update behind_the_scenes.rst doc with the new ‘flat normal form’
TODO: small optimisations, e.g. and/or chaining (potentially after negation), see test_flatten

	
cpmpy.transformations.flatten_model.flatten_constraint(expr)

	input is any expression; except is_num(), pure _NumVarImpl,
or Operator/GlobalConstraint with not is_bool()

output: see definition of ‘flat normal form’ above.

it will return ‘Exception’ if something is not supported
TODO, what built-in python error is best?
RE TODO: we now have custom NotImpl/NotSupported

	
cpmpy.transformations.flatten_model.flatten_model(orig_model)

	Receives model, returns new model where every constraint is in ‘flat normal form’

	
cpmpy.transformations.flatten_model.flatten_objective(expr, supported=frozenset({'sum', 'wsum'}))

	
	Decision variable: Var

	
	Linear: sum([Var]) (CPMpy class ‘Operator’, name ‘sum’)
	wsum([Const],[Var]) (CPMpy class ‘Operator’, name ‘wsum’)

	
cpmpy.transformations.flatten_model.get_or_make_var(expr)

	Must return a variable, and list of flat normal constraints
Determines whether this is a Boolean or Integer variable and returns
the equivalent of: (var, normalize(expr) == var)

	
cpmpy.transformations.flatten_model.get_or_make_var_or_list(expr)

	Like get_or_make_var() but also accepts and recursively transforms lists
Used to convert arguments of globals

	
cpmpy.transformations.flatten_model.normalized_boolexpr(expr)

	input is any Boolean (is_bool()) expression
output are all ‘flat normal form’ Boolean expressions that can be ‘reified’, meaning that

	subexpr == BoolVar

	subexpr -> BoolVar

are valid output expressions.

Currently, this is the case for subexpr:
- Boolean operators: and([Var]), or([Var]) (CPMpy class ‘Operator’, is_bool())
- Boolean equality: Var == Var (CPMpy class ‘Comparison’)
- Global constraint: global([Var]*) (CPMpy class ‘GlobalConstraint’)
- Comparison constraint (see elsewhere) (CPMpy class ‘Comparison’)

	output: (base_expr, base_cons) with:
	base_expr: same as ‘expr’, but all arguments are variables
base_cons: list of flat normal constraints

	
cpmpy.transformations.flatten_model.normalized_numexpr(expr)

	all ‘flat normal form’ numeric expressions…

Currently, this is the case for:

	
	Operator (non-Boolean) with all args Var/constant (examples: +,*,/,mod,wsum)
	(CPMpy class ‘Operator’, not is_bool())

	
	Global constraint (non-Boolean) (examples: Max,Min,Element)
	(CPMpy class ‘GlobalConstraint’, not is_bool()))

	output: (base_expr, base_cons) with:
	base_expr: same as ‘expr’, but all arguments are variables
base_cons: list of flat normal constraints

Get variables from expressions (cpmpy.transformations.get_variables)

Returns an list of all variables in the model or expressions

Variables are ordered by appearance, e.g. first encountered first

	
cpmpy.transformations.get_variables.get_variables(expr, collect=None)

	Get variables of an expression

	expr: Expression or list of expressions

	collect: optional set, variables will be added to this set of given

	
cpmpy.transformations.get_variables.get_variables_model(model)

	Get variables of a model (constraints and objective)

This is a separate function because we can not import
Model without a circular dependency…

	
cpmpy.transformations.get_variables.print_variables(expr_or_model)

	Print variables _and their domains_

argument ‘expr_or_model’ can be an expression or a model

	
cpmpy.transformations.get_variables.vars_expr(expr)

	

Convert constraints to linear form (cpmpy.transformations.linearize)

Transformations regarding linearization of constraints.

Linearized constraints have one of the following forms:

Linear comparison:

	LinExpr == Constant

	LinExpr >= Constant

	LinExpr <= Constant

	LinExpr can be any of:
	
	NumVar

	sum

	wsum

Indicator constraints:

	BoolVar -> LinExpr == Constant

	BoolVar -> LinExpr >= Constant

	BoolVar -> LinExpr <= Constant

	BoolVar -> GenExpr (GenExpr.name in supported, GenExpr.is_bool())

	BoolVar -> GenExpr >= Var/Constant (GenExpr.name in supported, GenExpr.is_num())

	BoolVar -> GenExpr <= Var/Constant (GenExpr.name in supported, GenExpr.is_num())

	BoolVar -> GenExpr == Var/Constant (GenExpr.name in supported, GenExpr.is_num())

Where BoolVar is a boolean variable or its negation.

General comparisons or expressions

	GenExpr (GenExpr.name in supported, GenExpr.is_bool())

	GenExpr == Var/Constant (GenExpr.name in supported, GenExpr.is_num())

	GenExpr <= Var/Constant (GenExpr.name in supported, GenExpr.is_num())

	GenExpr >= Var/Constant (GenExpr.name in supported, GenExpr.is_num())

	
cpmpy.transformations.linearize.canonical_comparison(lst_of_expr)

	

	
cpmpy.transformations.linearize.linearize_constraint(lst_of_expr, supported={'sum', 'wsum'}, reified=False)

	Transforms all constraints to a linear form.
This function assumes all constraints are in ‘flat normal form’ with only boolean variables on the lhs of an implication.
Only apply after ‘cpmpy.transformations.flatten_model.flatten_constraint()’ ‘and only_bv_implies()’.

AllDifferent has a special linearization and is decomposed as such if not in supported.
Any other unsupported global constraint should be decomposed using cpmpy.transformations.decompose_global.decompose_global()

	
cpmpy.transformations.linearize.only_positive_bv(lst_of_expr)

	Replaces constraints containing NegBoolView with equivalent expression using only BoolVar.
cpm_expr is expected to be linearized. Only apply after applying linearize_constraint(cpm_expr)

Resulting expression is linear.

Convert reification constraints (cpmpy.transformations.reification)

	
cpmpy.transformations.reification.only_bv_reifies(constraints)

	

	
cpmpy.transformations.reification.only_implies(constraints)

	Transforms all reifications to BV -> BE form

	More specifically:
	
	BV0 -> BV2 == BV3 :: BV0 -> (BV2->BV3 & BV3->BV2)
	:: BV0 -> (BV2->BV3) & BV0 -> (BV3->BV2)
:: BV0 -> (~BV2|BV3) & BV0 -> (~BV3|BV2)

BV == BE :: ~BV -> ~BE, BV -> BE

Assumes all constraints are in ‘flat normal form’ and all reifications have a variable in lhs. Hence, only apply
AFTER flatten() and ‘only_bv_reifies()’.

	
cpmpy.transformations.reification.reify_rewrite(constraints, supported=frozenset({}))

	Rewrites reified constraints not natively supported by a solver,
to a version that uses standard constraints and reification over equalities between variables.

Input is expected to be in Flat Normal Form without unsupported globals present.
(so after flatten_constraint() and ‘decompose_global()’)
Output will also be in Flat Normal Form

Boolean expressions ‘and’, ‘or’, and ‘->’ and comparison expression ‘IV1==IV2’ are assumed to support reification
(actually currently all comparisons <op> in {‘==’, ‘!=’, ‘<=’, ‘<’, ‘>=’, ‘>’},

IV1 <op> IV2 are assumed to support reification BV -> (IV1 <op> IV2))

	:param supported a (frozen)set of expression names that support reification in the solver, including
	supported ‘Left Hand Side (LHS)’ expressions in reified comparisons, e.g. BV -> (LHS == V)

Convert boolean expressions to cnf (cpmpy.transformations.to_cnf)

	
cpmpy.transformations.to_cnf.flat2cnf(constraints)

	
Converts from ‘flat normal form’ all logical constraints into Conjunctive Normal Form,
including flattening global constraints that are is_bool() and not in supported.

What is now left to do is to tseitin encode:

	BV with BV a BoolVar (or NegBoolView)

	or([BV]) constraint

	and([BV]) constraint

	BE != BV with BE :: BV|or()|and()|BV!=BV|BV==BV|BV->BV

	BE == BV

	BE -> BV

	BV -> BE

We do it in a principled way for each of the cases. (in)equalities
get transformed into implications, everything is modular.

Arguments:
- constraints: list[Expression] or Operator

	
cpmpy.transformations.to_cnf.to_cnf(constraints)

	Converts all logical constraints into Conjunctive Normal Form

Arguments:
- constraints: list[Expression] or Operator
- supported: (frozen)set of global constraint names that do not need to be decomposed

 _static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 CPMpy: Constraint Programming and Modeling in Python

 		
 Modeling and solving with CPMpy

 		
 Installation

 		
 Using the library

 		
 Decision variables

 		
 Creating a model

 		
 Expressing constraints

 		
 Logical constraints

 		
 Simple comparison constraints

 		
 Arithmetic constraints

 		
 Global constraints

 		
 Objective functions

 		
 Solving a model

 		
 Finding all solutions

 		
 Debugging a model

 		
 Selecting a solver

 		
 Model versus solver interface

 		
 Setting solver parameters

 		
 Accessing the underlying solver object

 		
 Incremental solving

 		
 Assumption-based solving

 		
 Using solver-specific CPMpy features

 		
 Direct solver access

 		
 DirectConstraint

 		
 Directly accessing the underlying solver

 		
 Hyperparameter search across different parameters

 		
 Built-in tuners

 		
 External tuners

 		
 How to debug

 		
 Debugging the solver

 		
 Debugging a modeling error

 		
 Debugging a solve() error

 		
 Debugging an UNSATisfiable model

 		
 Automatically minimising the UNSAT program

 		
 Correcting an UNSAT program

 		
 Debugging a satisfiable model, that does not contain an expected solution

 		
 Debugging a satisfiable model, which returns an impossible solution

 		
 Obtaining multiple solutions

 		
 solveAll() examples

 		
 Solution enumeration with blocking clauses

 		
 Diverse solution search

 		
 Mixing native callbacks with CPMpy

 		
 UnSAT core extraction with assumption variables

 		
 Developer guide

 		
 Setting up your development environment

 		
 Running the test suite

 		
 Code structure

 		
 Github practices

 		
 Adding a new solver

 		
 Transformations and posting constraints

 		
 Stateless transformation functions

 		
 What is a good Python interface for a solver?

 		
 Testing your solver

 		
 Tunable hyperparameters

 		
 Expressions (cpmpy.expressions)

 		
 List of submodules

 		
 Model (cpmpy.Model)

 		
 List of classes

 		
 Model

 		
 Model.copy()

 		
 Model.from_file()

 		
 Model.maximize()

 		
 Model.minimize()

 		
 Model.objective()

 		
 Model.objective_value()

 		
 Model.solve()

 		
 Model.solveAll()

 		
 Model.status()

 		
 Model.to_file()

 		
 Solver interfaces (cpmpy.solvers)

 		
 List of submodules

 		
 List of classes

 		
 List of functions

 		
 Expression transformations (cpmpy.transformations)

 		
 List of submodules

