

CPMpy: CP modeling made easy in Python

Welcome to CpMPy. Licensed under the MIT License.

CpMPy is a numpy-based light-weight Python library for conveniently modeling constraint problems in Python. It aims to connect to common constraint solving systems that have a Python API, such as MiniZinc (with solvers gecode, chuffed, ortools, picatsat, etc), or-tools through its Python API and more.

It is inspired by CVXpy, SciPy and Numberjack, and as most modern scientific Python tools, it uses numpy arrays as basic data structure.

A longer description of its motivation and architecture is in pdf.

The software is in ALPHA state, and more of a proof-of-concept really. Do send suggestions, additions, API changes, or even reuse some of these ideas in your own project!

Install the library

Documentation

Preface:

	Constraint Programming: a quick CPMpy prototype

	CPMpy’s pipeline

API documentation:

	Expressions

	Model

	Variables

	Solver Interfaces (cpmpy.solver_interface)

Supplementary examples package

FAQ

Problem: I get the following error:

Solution: Indexing an array with a variable is not allowed by standard numpy arrays, but it is allowed by cpmpy-numpy arrays. First convert your numpy array to a cpmpy-numpy array with the cparray() wrapper:

License

This library is delivered under the MIT License, (see [LICENSE](https://github.com/tias/cppy/blob/master/LICENSE)).

Constraint Programming: a quick CPMpy prototype

Constraint Programming

Many real-life decisions involve a large number of options. To decide if a problem is feasible or finding the best one amongst all the options is hard task to do by hand. In other words, to enumerate all the possible combinations of single decisions and evaluate them is infeasible in practice. To avoid this “brute force” approach, the paradigm of constraint programming (CP) allow us to:

	Model relationships between single decisions smartly

	Give an answer efficiently.

A constraint satisfaction problem (CSP) consists of a set of variables and constraints stablishing relationships between them. Each variable has a finite of possible values (its domain). The goal is to assign values to the variables in its domains satisfying all the constraints. A more general version, called constraint optimization programming (C0P), finds amongst all the feasible solutions the one that optimizes some measure, called ‘objective function’.

What is necessary to model a CP?

A typical CP is defined by the following elements:

Variables: define variables and domain. Types of domains for different types of variables.

Constraints: Short summary of constraints

Moreover, if we want to model an optimization problem we also need an objective function.

Example

A cryptarithmetic puzzle is a mathematical exercise where the digits of some numbers are represented by letters (or symbols). Each letter represents a unique digit. The goal is to find the digits such that a given mathematical equation is verified.

For example, we aim to allocate to the letters S,E,N,D,M,O,R,Y a digit between 0 and 9, being all the letters allocated to a different digit and such that the expression:

SEND + MORE = MONEY

is satisfied. This problem lies into the setting of constraint satisfaction problem (CSP). Here the variables are each letter S,E,N,D,M,O,R,Y and their domain is {0,1,2,…,9}. The constraints represents the fact that

The cpmpy implementation for this CSP looks like:

from cpmpy import *
import numpy as np

Construct the model
s,e,n,d,m,o,r,y = IntVar(0,9, 8)

constraint = []
constraint += [alldifferent([s,e,n,d,m,o,r,y])]
constraint += [sum([s,e,n,d] * np.flip(10**np.arange(4)))
 + sum([m,o,r,e] * np.flip(10**np.arange(4)))
 == sum([m,o,n,e,y] * np.flip(10**np.arange(5)))]

model = Model(constraint)
print(model)

stats = model.solve()
print(" S,E,N,D = ", [x.value() for x in [s,e,n,d]])
print(" M,O,R,E = ", [x.value() for x in [m,o,r,e]])
print("M,O,N,E,Y =", [x.value() for x in [m,o,n,e,y]])

A possible feasible allocation/solution is

S,E,N,D = [2, 8, 1, 7]
M,O,R,E = [0, 3, 6, 8]
M,O,N,E,Y = [0, 3, 1, 8, 5]

Note that we can find an slightly different version of this problem by optimizing an objective function, for example, optimizing the number formed by the word MONEY:

 CPMpy’s pipeline

CPMpy’s pipeline

CPMpy has two key parts:

	the ‘language’ that allows expressing constraint programming problems,

	a mechanism to translate this language to the API of solvers.

The language

When you write a CPMpy model (constraints and an objective), you use Python’s operators (*,+,sum,-,~,|,& etc) on CPMpy variables, as well as CPMpy functions and global constraints.

CPMpy uses Python’s operator overloading to build an expressions trees (see expression.py). From CPMpy’s point of view, a constraint programming problem is a list of expression trees (each one representing a constraint) and an expression tree for the objective function. You can write very complex nested expressions (e.g. (a | b) == ((x + y > 5) -> (c & d))), the language itself has few restrictions.

CPMpy only does minor modifications to the expressions when building the expression trees, e.g. it removes constants when chaining operators (e.g. x + 0 :: x)

So the language offers acces to the high level expressions written by the user.

But solvers can’t use this…

The mechanism

We have a number of staged transformations that the expression trees go through. These roughly correspond to different ‘normal forms’ as one would do in SAT, however, there are no ‘normal forms’ for constraint specifications as far as we are aware.

So far, we have the following 3 stages:

CPMpy expression trees -> flatten -> solver-specific transf -> solver API
|--------------------| |-----| |-----------------------------------|

As said, CPMpy expression trees allow arbitrary nesting, but only modeling languages (like MiniZinc and XCSP3) allow that. So if we want to use a solver API directly, we need to ‘flatten’ the nested expressions first.

Then, every solver has its own API, as well as some peculiarities (e.g. or-tools only supports implication/half-reifiction ->, not standard double reification == (sometimes written as <->). These transformations are bundled into the solver-specific file in CPMpy.

Flattened ‘normal form’

So that leaves the question, what is and is not allowed in this ‘flattened’ inbetween output?

Ideally, we can come up with a grammar that determines a formal normal form. By lack of that, here is a more informal description that is grammar-like.

Var = IntVar | BoolVar | Num
BoolVar = BoolVarImpl | NegBoolView | True | False

A variable is either an Integer decision variable, or a Boolean decision variable, or a numeric constant. For Boolean decision variables we have a special case: it is either an actual Boolean decision variable, or the negation of a Boolean decision variable (a negated ‘view’ on the variable), or the trivial True/False.

BaseCons = ("name", [Var])

A ‘base’ constraint is simply a name, with a list of variables (no nested expressions). This includes global constraints, but also conjunction, disjunction, equality, etc.

To support linear constraints and reification (equating the truth-value of a constraint to a Boolean variable), we allow a few cases where a comparison operator can have a base constraint as its left-hand side.

Special case 1, linear constraints:

We first define a linear expression as follows (weighted linear sum):

LinExpr = ("sum", ([Constant], [Var]))

This can be used in a linear constraint, or in the objective function:

Obj = Var | LinExpr

TODO: what about Max(), Min(), e.g. for makespan? Should be a standard operator?

A constraint that adds a comparison operator on a linear expression has two forms:

LinConsRel = ("==", (LinExpr, Var)) | ("!=", (LinExpr, Var))

So (dis)equality can have a variable (or a constant) as its right-hand side. Inequality comparison operators will not:

Op = ">" | ">=" | "<" | "<="
LinConsIne = (Op, (LinExpr, Num))

Special case 2, reification:

We first define the Boolean expressions that allow reification:

BoolExpr = ("and", [Var]) | ("or", [Var]) | LinConsRel | LinConsIne

TODO: some globals may also support reification… check and update here

Now, like linear constraints, in case of reification and implication, the left-hand side can be a simple Boolean expression with the right-hand side a Boolean variable:

Reif = ("==", (BoolExpr, BoolVar))
Impl = ("->", (BoolExpr, BoolVar))

 Expressions

Expressions

List of classes

	Expression

	each Expression is a function with a self.name and self.args (arguments) each Expression is considered to be a function whose value can be used in other expressions each Expression may implement: - boolexpr(): the Boolean form of the expression default: (expr == 1) override for Boolean expressions (preferably through __eq__, see Comparison) - value(): the value of the expression, default None

	Operator

	All kinds of operators on expressions, including mathematical and logical # convention for 2-ary operators: if one of the two is a constant, # it is stored first (as expr[0]), this eases weighted sum detection

	Element

	constraint Arr[X] = Y ‘Y’ here is optional, can use as function: Arr[X] + 3 <= Y

	GlobalConstraint

	

Module description

Module details

 Model

Model

List of classes

	Model

	CPMpy Model object, contains the constraint and objective expression trees

Module description

Module details

	
class cpmpy.model.Model(*args, minimize=None, maximize=None)

	CPMpy Model object, contains the constraint and objective expression trees

Arguments of constructor:
*args: Expression object(s) or list(s) of Expression objects
minimize: Expression object representing the objective to minimize
maximize: Expression object representing the objective to maximize

At most one of minimize/maximize can be set, if none are set, it is assumed to be a satisfaction problem

	
make_and_from_list(args)

	recursively reads a list of Expression and returns the ‘And’ conjunctive of the elements in the list

	
solve(solver=None)

	Send the model to a solver and get the result

‘solver’: None (default) or in [s.name in get_supported_solvers()] or a SolverInterface object
verifies that the solver is supported on the current system

	Returns

	the computed output:
- True if it is a satisfaction problem and it is satisfiable
- False if it is a satisfaction problem and not satisfiable
- [int] if it is an optimisation problem

	
status()

	
Returns the status of the latest solver run on this model

Status information includes exit status (optimality) and runtime.

	Returns

	an object of SolverStatus

 Variables

Variables

List of classes

	Operator

	All kinds of operators on expressions, including mathematical and logical # convention for 2-ary operators: if one of the two is a constant, # it is stored first (as expr[0]), this eases weighted sum detection

	Element

	constraint Arr[X] = Y ‘Y’ here is optional, can use as function: Arr[X] + 3 <= Y

Module description

Module details

	
class cpmpy.variables.BoolVarImpl(lb=0, ub=1)

	

	
class cpmpy.variables.IntVarImpl(lb, ub, setname=True)

	

	
class cpmpy.variables.NDVarArray(shape, **kwargs)

	
	
T

	The transposed array.

Same as self.transpose().

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[1., 2.],
 [3., 4.]])
>>> x.T
array([[1., 3.],
 [2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])

transpose

	
all(axis=None, out=None, keepdims=False, *, where=True)

	Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

numpy.all : equivalent function

	
any(axis=None, out=None, keepdims=False, *, where=True)

	Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

numpy.any : equivalent function

	
argmax(axis=None, out=None)

	Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

numpy.argmax : equivalent function

	
argmin(axis=None, out=None)

	Return indices of the minimum values along the given axis.

Refer to numpy.argmin for detailed documentation.

numpy.argmin : equivalent function

	
argpartition(kth, axis=- 1, kind='introselect', order=None)

	Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

numpy.argpartition : equivalent function

	
argsort(axis=- 1, kind=None, order=None)

	Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

numpy.argsort : equivalent function

	
astype(dtype, order='K', casting='unsafe', subok=True, copy=True)

	Copy of the array, cast to a specified type.

	dtypestr or dtype
	Typecode or data-type to which the array is cast.

	order{‘C’, ‘F’, ‘A’, ‘K’}, optional
	Controls the memory layout order of the result.
‘C’ means C order, ‘F’ means Fortran order, ‘A’
means ‘F’ order if all the arrays are Fortran contiguous,
‘C’ order otherwise, and ‘K’ means as close to the
order the array elements appear in memory as possible.
Default is ‘K’.

	casting{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional
	Controls what kind of data casting may occur. Defaults to ‘unsafe’
for backwards compatibility.

	‘no’ means the data types should not be cast at all.

	‘equiv’ means only byte-order changes are allowed.

	‘safe’ means only casts which can preserve values are allowed.

	‘same_kind’ means only safe casts or casts within a kind,
like float64 to float32, are allowed.

	‘unsafe’ means any data conversions may be done.

	subokbool, optional
	If True, then sub-classes will be passed-through (default), otherwise
the returned array will be forced to be a base-class array.

	copybool, optional
	By default, astype always returns a newly allocated array. If this
is set to false, and the dtype, order, and subok
requirements are satisfied, the input array is returned instead
of a copy.

	arr_tndarray
	Unless copy is False and the other conditions for returning the input
array are satisfied (see description for copy input parameter), arr_t
is a new array of the same shape as the input array, with dtype, order
given by dtype, order.

Changed in version 1.17.0: Casting between a simple data type and a structured one is possible only
for “unsafe” casting. Casting to multiple fields is allowed, but
casting from multiple fields is not.

Changed in version 1.9.0: Casting from numeric to string types in ‘safe’ casting mode requires
that the string dtype length is long enough to store the max
integer/float value converted.

	ComplexWarning
	When casting from complex to float or int. To avoid this,
one should use a.real.astype(t).

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

	
base

	Base object if memory is from some other object.

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

	
byteswap(inplace=False)

	Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by
returning a byteswapped array, optionally swapped in-place.
Arrays of byte-strings are not swapped. The real and imaginary
parts of a complex number are swapped individually.

	inplacebool, optional
	If True, swap bytes in-place, default is False.

	outndarray
	The byteswapped array. If inplace is True, this is
a view to self.

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> list(map(hex, A))
['0x1', '0x100', '0x2233']
>>> A.byteswap(inplace=True)
array([256, 1, 13090], dtype=int16)
>>> list(map(hex, A))
['0x100', '0x1', '0x3322']

Arrays of byte-strings are not swapped

>>> A = np.array([b'ceg', b'fac'])
>>> A.byteswap()
array([b'ceg', b'fac'], dtype='|S3')

	A.newbyteorder().byteswap() produces an array with the same values
	but different representation in memory

>>> A = np.array([1, 2, 3])
>>> A.view(np.uint8)
array([1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0,
 0, 0], dtype=uint8)
>>> A.newbyteorder().byteswap(inplace=True)
array([1, 2, 3])
>>> A.view(np.uint8)
array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,
 0, 3], dtype=uint8)

	
choose(choices, out=None, mode='raise')

	Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

numpy.choose : equivalent function

	
clip(min=None, max=None, out=None, **kwargs)

	Return an array whose values are limited to [min, max].
One of max or min must be given.

Refer to numpy.clip for full documentation.

numpy.clip : equivalent function

	
compress(condition, axis=None, out=None)

	Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

numpy.compress : equivalent function

	
conj()

	Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

numpy.conjugate : equivalent function

	
conjugate()

	Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

numpy.conjugate : equivalent function

	
copy(order='C')

	Return a copy of the array.

	order{‘C’, ‘F’, ‘A’, ‘K’}, optional
	Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible. (Note that this function and numpy.copy() are very
similar, but have different default values for their order=
arguments.)

numpy.copy
numpy.copyto

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],
 [0, 0, 0]])

>>> y
array([[1, 2, 3],
 [4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

	
ctypes

	An object to simplify the interaction of the array with the ctypes
module.

This attribute creates an object that makes it easier to use arrays
when calling shared libraries with the ctypes module. The returned
object has, among others, data, shape, and strides attributes (see
Notes below) which themselves return ctypes objects that can be used
as arguments to a shared library.

None

	cPython object
	Possessing attributes data, shape, strides, etc.

numpy.ctypeslib

Below are the public attributes of this object which were documented
in “Guide to NumPy” (we have omitted undocumented public attributes,
as well as documented private attributes):

	
_ctypes.data

	A pointer to the memory area of the array as a Python integer.
This memory area may contain data that is not aligned, or not in correct
byte-order. The memory area may not even be writeable. The array
flags and data-type of this array should be respected when passing this
attribute to arbitrary C-code to avoid trouble that can include Python
crashing. User Beware! The value of this attribute is exactly the same
as self._array_interface_['data'][0].

Note that unlike data_as, a reference will not be kept to the array:
code like ctypes.c_void_p((a + b).ctypes.data) will result in a
pointer to a deallocated array, and should be spelt
(a + b).ctypes.data_as(ctypes.c_void_p)

	
_ctypes.shape

	(c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the C-integer corresponding to dtype('p') on this
platform. This base-type could be ctypes.c_int, ctypes.c_long, or
ctypes.c_longlong depending on the platform.
The c_intp type is defined accordingly in numpy.ctypeslib.
The ctypes array contains the shape of the underlying array.

	
_ctypes.strides

	(c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the same as for the shape attribute. This ctypes array
contains the strides information from the underlying array. This strides
information is important for showing how many bytes must be jumped to
get to the next element in the array.

	
_ctypes.data_as(obj)

	Return the data pointer cast to a particular c-types object.
For example, calling self._as_parameter_ is equivalent to
self.data_as(ctypes.c_void_p). Perhaps you want to use the data as a
pointer to a ctypes array of floating-point data:
self.data_as(ctypes.POINTER(ctypes.c_double)).

The returned pointer will keep a reference to the array.

	
_ctypes.shape_as(obj)

	Return the shape tuple as an array of some other c-types
type. For example: self.shape_as(ctypes.c_short).

	
_ctypes.strides_as(obj)

	Return the strides tuple as an array of some other
c-types type. For example: self.strides_as(ctypes.c_longlong).

If the ctypes module is not available, then the ctypes attribute
of array objects still returns something useful, but ctypes objects
are not returned and errors may be raised instead. In particular,
the object will still have the as_parameter attribute which will
return an integer equal to the data attribute.

>>> import ctypes
>>> x = np.array([[0, 1], [2, 3]], dtype=np.int32)
>>> x
array([[0, 1],
 [2, 3]], dtype=int32)
>>> x.ctypes.data
31962608 # may vary
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32))
<__main__.LP_c_uint object at 0x7ff2fc1fc200> # may vary
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32)).contents
c_uint(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint64)).contents
c_ulong(4294967296)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x7ff2fc1fce60> # may vary
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x7ff2fc1ff320> # may vary

	
cumprod(axis=None, dtype=None, out=None)

	Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

numpy.cumprod : equivalent function

	
cumsum(axis=None, dtype=None, out=None)

	Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

numpy.cumsum : equivalent function

	
data

	Python buffer object pointing to the start of the array’s data.

	
diagonal(offset=0, axis1=0, axis2=1)

	Return specified diagonals. In NumPy 1.9 the returned array is a
read-only view instead of a copy as in previous NumPy versions. In
a future version the read-only restriction will be removed.

Refer to numpy.diagonal() for full documentation.

numpy.diagonal : equivalent function

	
dot(b, out=None)

	Dot product of two arrays.

Refer to numpy.dot for full documentation.

numpy.dot : equivalent function

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2., 2.],
 [2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[8., 8.],
 [8., 8.]])

	
dtype

	Data-type of the array’s elements.

None

d : numpy dtype object

numpy.dtype

>>> x
array([[0, 1],
 [2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

	
dump(file)

	Dump a pickle of the array to the specified file.
The array can be read back with pickle.load or numpy.load.

	filestr or Path
	A string naming the dump file.

Changed in version 1.17.0: pathlib.Path objects are now accepted.

	
dumps()

	Returns the pickle of the array as a string.
pickle.loads or numpy.loads will convert the string back to an array.

None

	
fill(value)

	Fill the array with a scalar value.

	valuescalar
	All elements of a will be assigned this value.

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

	
flags

	Information about the memory layout of the array.

	C_CONTIGUOUS (C)
	The data is in a single, C-style contiguous segment.

	F_CONTIGUOUS (F)
	The data is in a single, Fortran-style contiguous segment.

	OWNDATA (O)
	The array owns the memory it uses or borrows it from another object.

	WRITEABLE (W)
	The data area can be written to. Setting this to False locks
the data, making it read-only. A view (slice, etc.) inherits WRITEABLE
from its base array at creation time, but a view of a writeable
array may be subsequently locked while the base array remains writeable.
(The opposite is not true, in that a view of a locked array may not
be made writeable. However, currently, locking a base object does not
lock any views that already reference it, so under that circumstance it
is possible to alter the contents of a locked array via a previously
created writeable view onto it.) Attempting to change a non-writeable
array raises a RuntimeError exception.

	ALIGNED (A)
	The data and all elements are aligned appropriately for the hardware.

	WRITEBACKIFCOPY (X)
	This array is a copy of some other array. The C-API function
PyArray_ResolveWritebackIfCopy must be called before deallocating
to the base array will be updated with the contents of this array.

	UPDATEIFCOPY (U)
	(Deprecated, use WRITEBACKIFCOPY) This array is a copy of some other array.
When this array is
deallocated, the base array will be updated with the contents of
this array.

	FNC
	F_CONTIGUOUS and not C_CONTIGUOUS.

	FORC
	F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

	BEHAVED (B)
	ALIGNED and WRITEABLE.

	CARRAY (CA)
	BEHAVED and C_CONTIGUOUS.

	FARRAY (FA)
	BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']),
or by using lowercased attribute names (as in a.flags.writeable). Short flag
names are only supported in dictionary access.

Only the WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be
changed by the user, via direct assignment to the attribute or dictionary
entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

	UPDATEIFCOPY can only be set False.

	WRITEBACKIFCOPY can only be set False.

	ALIGNED can only be set True if the data is truly aligned.

	WRITEABLE can only be set True if the array owns its own memory
or the ultimate owner of the memory exposes a writeable buffer
interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously.
This is clear for 1-dimensional arrays, but can also be true for higher
dimensional arrays.

Even for contiguous arrays a stride for a given dimension
arr.strides[dim] may be arbitrary if arr.shape[dim] == 1
or the array has no elements.
It does not generally hold that self.strides[-1] == self.itemsize
for C-style contiguous arrays or self.strides[0] == self.itemsize for
Fortran-style contiguous arrays is true.

	
flat

	A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not
a subclass of, Python’s built-in iterator object.

flatten : Return a copy of the array collapsed into one dimension.

flatiter

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],
 [4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],
 [2, 5],
 [3, 6]])
>>> x.T.flat[3]
5
>>> type(x.flat)
<class 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],
 [3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],
 [3, 1, 3]])

	
flatten(order='C')

	Return a copy of the array collapsed into one dimension.

	order{‘C’, ‘F’, ‘A’, ‘K’}, optional
	‘C’ means to flatten in row-major (C-style) order.
‘F’ means to flatten in column-major (Fortran-
style) order. ‘A’ means to flatten in column-major
order if a is Fortran contiguous in memory,
row-major order otherwise. ‘K’ means to flatten
a in the order the elements occur in memory.
The default is ‘C’.

	yndarray
	A copy of the input array, flattened to one dimension.

ravel : Return a flattened array.
flat : A 1-D flat iterator over the array.

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

	
getfield(dtype, offset=0)

	Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in
the view are determined by the given type and the offset into the current
array in bytes. The offset needs to be such that the view dtype fits in the
array dtype; for example an array of dtype complex128 has 16-byte elements.
If taking a view with a 32-bit integer (4 bytes), the offset needs to be
between 0 and 12 bytes.

	dtypestr or dtype
	The data type of the view. The dtype size of the view can not be larger
than that of the array itself.

	offsetint
	Number of bytes to skip before beginning the element view.

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],
 [0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],
 [0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the
array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],
 [0., 4.]])

	
imag

	The imaginary part of the array.

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

	
item(*args)

	Copy an element of an array to a standard Python scalar and return it.

*args : Arguments (variable number and type)

	none: in this case, the method only works for arrays
with one element (a.size == 1), which element is
copied into a standard Python scalar object and returned.

	int_type: this argument is interpreted as a flat index into
the array, specifying which element to copy and return.

	tuple of int_types: functions as does a single int_type argument,
except that the argument is interpreted as an nd-index into the
array.

	zStandard Python scalar object
	A copy of the specified element of the array as a suitable
Python scalar

When the data type of a is longdouble or clongdouble, item() returns
a scalar array object because there is no available Python scalar that
would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar,
a standard Python scalar is returned. This can be useful for speeding up
access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

>>> np.random.seed(123)
>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[2, 2, 6],
 [1, 3, 6],
 [1, 0, 1]])
>>> x.item(3)
1
>>> x.item(7)
0
>>> x.item((0, 1))
2
>>> x.item((2, 2))
1

	
itemset(*args)

	Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument
as item. Then, a.itemset(*args) is equivalent to but faster
than a[args] = item. The item should be a scalar value and args
must select a single item in the array a.

	*argsArguments
	If one argument: a scalar, only used in case a is of size 1.
If two arguments: the last argument is the value to be set
and must be a scalar, the first argument specifies a single array
element location. It is either an int or a tuple.

Compared to indexing syntax, itemset provides some speed increase
for placing a scalar into a particular location in an ndarray,
if you must do this. However, generally this is discouraged:
among other problems, it complicates the appearance of the code.
Also, when using itemset (and item) inside a loop, be sure
to assign the methods to a local variable to avoid the attribute
look-up at each loop iteration.

>>> np.random.seed(123)
>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[2, 2, 6],
 [1, 3, 6],
 [1, 0, 1]])
>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[2, 2, 6],
 [1, 0, 6],
 [1, 0, 9]])

	
itemsize

	Length of one array element in bytes.

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

	
max(axis=None, out=None, keepdims=False, initial=<no value>, where=True)

	Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

numpy.amax : equivalent function

	
mean(axis=None, dtype=None, out=None, keepdims=False, *, where=True)

	Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

numpy.mean : equivalent function

	
min(axis=None, out=None, keepdims=False, initial=<no value>, where=True)

	Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

numpy.amin : equivalent function

	
nbytes

	Total bytes consumed by the elements of the array.

Does not include memory consumed by non-element attributes of the
array object.

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

	
ndim

	Number of array dimensions.

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

	
newbyteorder(new_order='S', /)

	Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data
type.

	new_orderstring, optional
	Byte order to force; a value from the byte order specifications
below. new_order codes can be any of:

	‘S’ - swap dtype from current to opposite endian

	{‘<’, ‘little’} - little endian

	{‘>’, ‘big’} - big endian

	‘=’ - native order, equivalent to sys.byteorder

	{‘|’, ‘I’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current
byte order.

	new_arrarray
	New array object with the dtype reflecting given change to the
byte order.

	
nonzero()

	Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

numpy.nonzero : equivalent function

	
partition(kth, axis=- 1, kind='introselect', order=None)

	Rearranges the elements in the array in such a way that the value of the
element in kth position is in the position it would be in a sorted array.
All elements smaller than the kth element are moved before this element and
all equal or greater are moved behind it. The ordering of the elements in
the two partitions is undefined.

New in version 1.8.0.

	kthint or sequence of ints
	Element index to partition by. The kth element value will be in its
final sorted position and all smaller elements will be moved before it
and all equal or greater elements behind it.
The order of all elements in the partitions is undefined.
If provided with a sequence of kth it will partition all elements
indexed by kth of them into their sorted position at once.

	axisint, optional
	Axis along which to sort. Default is -1, which means sort along the
last axis.

	kind{‘introselect’}, optional
	Selection algorithm. Default is ‘introselect’.

	orderstr or list of str, optional
	When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can
be specified as a string, and not all fields need to be specified,
but unspecified fields will still be used, in the order in which
they come up in the dtype, to break ties.

numpy.partition : Return a parititioned copy of an array.
argpartition : Indirect partition.
sort : Full sort.

See np.partition for notes on the different algorithms.

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(3)
>>> a
array([2, 1, 3, 4])

>>> a.partition((1, 3))
>>> a
array([1, 2, 3, 4])

	
prod(axis=None, dtype=None, out=None, keepdims=False, initial=1, where=True)

	Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

numpy.prod : equivalent function

	
ptp(axis=None, out=None, keepdims=False)

	Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

numpy.ptp : equivalent function

	
put(indices, values, mode='raise')

	Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

numpy.put : equivalent function

	
ravel([order])

	Return a flattened array.

Refer to numpy.ravel for full documentation.

numpy.ravel : equivalent function

ndarray.flat : a flat iterator on the array.

	
real

	The real part of the array.

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

numpy.real : equivalent function

	
repeat(repeats, axis=None)

	Repeat elements of an array.

Refer to numpy.repeat for full documentation.

numpy.repeat : equivalent function

	
reshape(shape, order='C')

	Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

numpy.reshape : equivalent function

Unlike the free function numpy.reshape, this method on ndarray allows
the elements of the shape parameter to be passed in as separate arguments.
For example, a.reshape(10, 11) is equivalent to
a.reshape((10, 11)).

	
resize(new_shape, refcheck=True)

	Change shape and size of array in-place.

	new_shapetuple of ints, or n ints
	Shape of resized array.

	refcheckbool, optional
	If False, reference count will not be checked. Default is True.

None

	ValueError
	If a does not own its own data or references or views to it exist,
and the data memory must be changed.
PyPy only: will always raise if the data memory must be changed, since
there is no reliable way to determine if references or views to it
exist.

	SystemError
	If the order keyword argument is specified. This behaviour is a
bug in NumPy.

resize : Return a new array with the specified shape.

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be
resized.

The purpose of the reference count check is to make sure you
do not use this array as a buffer for another Python object and then
reallocate the memory. However, reference counts can increase in
other ways so if you are sure that you have not shared the memory
for this array with another Python object, then you may safely set
refcheck to False.

Shrinking an array: array is flattened (in the order that the data are
stored in memory), resized, and reshaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],
 [1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],
 [2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],
 [3, 0, 0]])

Referencing an array prevents resizing…

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that references or is referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

	
round(decimals=0, out=None)

	Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

numpy.around : equivalent function

	
searchsorted(v, side='left', sorter=None)

	Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

numpy.searchsorted : equivalent function

	
setfield(val, dtype, offset=0)

	Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dtype and beginning offset
bytes into the field.

	valobject
	Value to be placed in field.

	dtypedtype object
	Data-type of the field in which to place val.

	offsetint, optional
	The number of bytes into the field at which to place val.

None

getfield

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])
>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],
 [3, 3, 3],
 [3, 3, 3]], dtype=int32)
>>> x
array([[1.0e+000, 1.5e-323, 1.5e-323],
 [1.5e-323, 1.0e+000, 1.5e-323],
 [1.5e-323, 1.5e-323, 1.0e+000]])
>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

	
setflags(write=None, align=None, uic=None)

	Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY),
respectively.

These Boolean-valued flags affect how numpy interprets the memory
area used by a (see Notes below). The ALIGNED flag can only
be set to True if the data is actually aligned according to the type.
The WRITEBACKIFCOPY and (deprecated) UPDATEIFCOPY flags can never be set
to True. The flag WRITEABLE can only be set to True if the array owns its
own memory, or the ultimate owner of the memory exposes a writeable buffer
interface, or is a string. (The exception for string is made so that
unpickling can be done without copying memory.)

	writebool, optional
	Describes whether or not a can be written to.

	alignbool, optional
	Describes whether or not a is aligned properly for its type.

	uicbool, optional
	Describes whether or not a is a copy of another “base” array.

Array flags provide information about how the memory area used
for the array is to be interpreted. There are 7 Boolean flags
in use, only four of which can be changed by the user:
WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware
(as determined by the compiler);

UPDATEIFCOPY (U) (deprecated), replaced by WRITEBACKIFCOPY;

WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced
by .base). When the C-API function PyArray_ResolveWritebackIfCopy is
called, the base array will be updated with the contents of this array.

All flags can be accessed using the single (upper case) letter as well
as the full name.

>>> y = np.array([[3, 1, 7],
... [2, 0, 0],
... [8, 5, 9]])
>>> y
array([[3, 1, 7],
 [2, 0, 0],
 [8, 5, 9]])
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : True
 ALIGNED : True
 WRITEBACKIFCOPY : False
 UPDATEIFCOPY : False
>>> y.setflags(write=0, align=0)
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : False
 ALIGNED : False
 WRITEBACKIFCOPY : False
 UPDATEIFCOPY : False
>>> y.setflags(uic=1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: cannot set WRITEBACKIFCOPY flag to True

	
shape

	Tuple of array dimensions.

The shape property is usually used to get the current shape of an array,
but may also be used to reshape the array in-place by assigning a tuple of
array dimensions to it. As with numpy.reshape, one of the new shape
dimensions can be -1, in which case its value is inferred from the size of
the array and the remaining dimensions. Reshaping an array in-place will
fail if a copy is required.

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.]])
>>> y.shape = (3, 6)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged
>>> np.zeros((4,2))[::2].shape = (-1,)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: Incompatible shape for in-place modification. Use
`.reshape()` to make a copy with the desired shape.

numpy.reshape : similar function
ndarray.reshape : similar method

	
size

	Number of elements in the array.

Equal to np.prod(a.shape), i.e., the product of the array’s
dimensions.

a.size returns a standard arbitrary precision Python integer. This
may not be the case with other methods of obtaining the same value
(like the suggested np.prod(a.shape), which returns an instance
of np.int_), and may be relevant if the value is used further in
calculations that may overflow a fixed size integer type.

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

	
sort(axis=- 1, kind=None, order=None)

	Sort an array in-place. Refer to numpy.sort for full documentation.

	axisint, optional
	Axis along which to sort. Default is -1, which means sort along the
last axis.

	kind{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional
	Sorting algorithm. The default is ‘quicksort’. Note that both ‘stable’
and ‘mergesort’ use timsort under the covers and, in general, the
actual implementation will vary with datatype. The ‘mergesort’ option
is retained for backwards compatibility.

Changed in version 1.15.0.: The ‘stable’ option was added.

	orderstr or list of str, optional
	When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can
be specified as a string, and not all fields need be specified,
but unspecified fields will still be used, in the order in which
they come up in the dtype, to break ties.

numpy.sort : Return a sorted copy of an array.
numpy.argsort : Indirect sort.
numpy.lexsort : Indirect stable sort on multiple keys.
numpy.searchsorted : Find elements in sorted array.
numpy.partition: Partial sort.

See numpy.sort for notes on the different sorting algorithms.

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],
 [1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],
 [1, 4]])

Use the order keyword to specify a field to use when sorting a
structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([(b'c', 1), (b'a', 2)],
 dtype=[('x', 'S1'), ('y', '<i8')])

	
squeeze(axis=None)

	Remove axes of length one from a.

Refer to numpy.squeeze for full documentation.

numpy.squeeze : equivalent function

	
std(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)

	Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

numpy.std : equivalent function

	
strides

	Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a
is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the
“ndarray.rst” file in the NumPy reference guide.

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other
(known as a contiguous block of memory). The strides of an array tell
us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to
move to the next column, but 20 bytes (5 values) to get to the same
position in the next row. As such, the strides for the array x will be
(20, 4).

numpy.lib.stride_tricks.as_strided

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],
 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]]])
>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

	
sum(axis=None, out=None)

	overwrite np.sum(NDVarArray) as people might use it

does not actually support axis/out… todo?

	
swapaxes(axis1, axis2)

	Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

numpy.swapaxes : equivalent function

	
take(indices, axis=None, out=None, mode='raise')

	Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

numpy.take : equivalent function

	
tobytes(order='C')

	Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of
data memory. The bytes object is produced in C-order by default.
This behavior is controlled by the order parameter.

New in version 1.9.0.

	order{‘C’, ‘F’, ‘A’}, optional
	Controls the memory layout of the bytes object. ‘C’ means C-order,
‘F’ means F-order, ‘A’ (short for Any) means ‘F’ if a is
Fortran contiguous, ‘C’ otherwise. Default is ‘C’.

	sbytes
	Python bytes exhibiting a copy of a’s raw data.

>>> x = np.array([[0, 1], [2, 3]], dtype='<u2')
>>> x.tobytes()
b'\x00\x00\x01\x00\x02\x00\x03\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x02\x00\x01\x00\x03\x00'

	
tofile(fid, sep='', format='%s')

	Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a.
The data produced by this method can be recovered using the function
fromfile().

	fidfile or str or Path
	An open file object, or a string containing a filename.

Changed in version 1.17.0: pathlib.Path objects are now accepted.

	sepstr
	Separator between array items for text output.
If “” (empty), a binary file is written, equivalent to
file.write(a.tobytes()).

	formatstr
	Format string for text file output.
Each entry in the array is formatted to text by first converting
it to the closest Python type, and then using “format” % item.

This is a convenience function for quick storage of array data.
Information on endianness and precision is lost, so this method is not a
good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome
by outputting the data as text files, at the expense of speed and file
size.

When fid is a file object, array contents are directly written to the
file, bypassing the file object’s write method. As a result, tofile
cannot be used with files objects supporting compression (e.g., GzipFile)
or file-like objects that do not support fileno() (e.g., BytesIO).

	
tolist()

	Return the array as an a.ndim-levels deep nested list of Python scalars.

Return a copy of the array data as a (nested) Python list.
Data items are converted to the nearest compatible builtin Python type, via
the ~numpy.ndarray.item function.

If a.ndim is 0, then since the depth of the nested list is 0, it will
not be a list at all, but a simple Python scalar.

none

	yobject, or list of object, or list of list of object, or …
	The possibly nested list of array elements.

The array may be recreated via a = np.array(a.tolist()), although this
may sometimes lose precision.

For a 1D array, a.tolist() is almost the same as list(a),
except that tolist changes numpy scalars to Python scalars:

>>> a = np.uint32([1, 2])
>>> a_list = list(a)
>>> a_list
[1, 2]
>>> type(a_list[0])
<class 'numpy.uint32'>
>>> a_tolist = a.tolist()
>>> a_tolist
[1, 2]
>>> type(a_tolist[0])
<class 'int'>

Additionally, for a 2D array, tolist applies recursively:

>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

The base case for this recursion is a 0D array:

>>> a = np.array(1)
>>> list(a)
Traceback (most recent call last):
 ...
TypeError: iteration over a 0-d array
>>> a.tolist()
1

	
tostring(order='C')

	A compatibility alias for tobytes, with exactly the same behavior.

Despite its name, it returns bytes not strs.

Deprecated since version 1.19.0.

	
trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)

	Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

numpy.trace : equivalent function

	
transpose(*axes)

	Returns a view of the array with axes transposed.

For a 1-D array this has no effect, as a transposed vector is simply the
same vector. To convert a 1-D array into a 2D column vector, an additional
dimension must be added. np.atleast2d(a).T achieves this, as does
a[:, np.newaxis].
For a 2-D array, this is a standard matrix transpose.
For an n-D array, if axes are given, their order indicates how the
axes are permuted (see Examples). If axes are not provided and
a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then
a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]).

axes : None, tuple of ints, or n ints

	None or no argument: reverses the order of the axes.

	tuple of ints: i in the j-th place in the tuple means a’s
i-th axis becomes a.transpose()’s j-th axis.

	n ints: same as an n-tuple of the same ints (this form is
intended simply as a “convenience” alternative to the tuple form)

	outndarray
	View of a, with axes suitably permuted.

ndarray.T : Array property returning the array transposed.
ndarray.reshape : Give a new shape to an array without changing its data.

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
 [3, 4]])
>>> a.transpose()
array([[1, 3],
 [2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],
 [2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
 [2, 4]])

	
var(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)

	Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

numpy.var : equivalent function

	
view([dtype][, type])

	New view of array with the same data.

Note

Passing None for dtype is different from omitting the parameter,
since the former invokes dtype(None) which is an alias for
dtype('float_').

	dtypedata-type or ndarray sub-class, optional
	Data-type descriptor of the returned view, e.g., float32 or int16.
Omitting it results in the view having the same data-type as a.
This argument can also be specified as an ndarray sub-class, which
then specifies the type of the returned object (this is equivalent to
setting the type parameter).

	typePython type, optional
	Type of the returned view, e.g., ndarray or matrix. Again, omission
of the parameter results in type preservation.

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view
of the array’s memory with a different data-type. This can cause a
reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just
returns an instance of ndarray_subclass that looks at the same array
(same shape, dtype, etc.) This does not cause a reinterpretation of the
memory.

For a.view(some_dtype), if some_dtype has a different number of
bytes per entry than the previous dtype (for example, converting a
regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown
by print(a)). It also depends on exactly how a is stored in
memory. Therefore if a is C-ordered versus fortran-ordered, versus
defined as a slice or transpose, etc., the view may give different
results.

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],
 [3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> x
array([(1, 20), (3, 4)], dtype=[('a', 'i1'), ('b', 'i1')])

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1, 3], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be
avoided on arrays defined by slices, transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],
 [4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
 ...
ValueError: To change to a dtype of a different size, the array must be C-contiguous
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],
 [(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

	
class cpmpy.variables.NegBoolView(bv)

	Represents not(var), not an actual variable implementation!

It stores a link to var’s BoolVarImpl

	
class cpmpy.variables.NumVarImpl(lb, ub)

	

 Solver Interfaces (cpmpy.solver_interface)

Solver Interfaces (cpmpy.solver_interface)

List of classes

	SolverInterface

	Abstract class for defining solver interfaces.

	SolverStatus

	Status and statistics of a solver run

	ExitStatus

	Exit status of the solver

Module description

Contains the abstract class SolverInterface for defining solver interfaces,
as well as a class SolverStatus that collects solver statistics,
and the ExitStatus class that represents possible exist statuses.

Each solver has its own class that inherits from SolverInterface.

	
class cpmpy.solver_interfaces.solver_interface.ExitStatus(value)

	Exit status of the solver

	Attributes:
	NOT_RUN: Has not been run
OPTIMAL: Optimal solution to an optimisation problem found
FEASIBLE: Feasible solution to a satisfaction problem found,

or feasible (but not proven optimal) solution to an
optimisation problem found

UNSATISFIABLE: No satisfying solution exists
ERROR: Some error occured (solver should have thrown Exception)

	
class cpmpy.solver_interfaces.solver_interface.SolverInterface

	Abstract class for defining solver interfaces. All classes implementing
the SolverInterface

	
abstract solve(model)

	
Build the CPMpy model into solver-supported model ready for solving
and returns the solver statistics generated during model solving.

	Parameters

	model (Model) – CPMpy model to be parsed.

	Returns

	an object of SolverStatus

	
abstract supported()

	
Check for support in current system setup. Return True if the system
has package installed or supports solver, else returns False.

	Returns:
	[bool]: Solver support by current system setup.

	
class cpmpy.solver_interfaces.solver_interface.SolverStatus

	Status and statistics of a solver run

 Python Module Index

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cpmpy	

 	
 	
 cpmpy.expressions	

 	
 	
 cpmpy.model	

 	
 	
 cpmpy.solver_interfaces.minizinc_python	

 	
 	
 cpmpy.solver_interfaces.minizinc_text	

 	
 	
 cpmpy.solver_interfaces.ortools_python	

 	
 	
 cpmpy.solver_interfaces.solver_interface	

 	
 	
 cpmpy.variables	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | M
 | N
 | P
 | R
 | S
 | T
 | V

A

 	
 	all() (cpmpy.variables.NDVarArray method)

 	any() (cpmpy.variables.NDVarArray method)

 	argmax() (cpmpy.variables.NDVarArray method)

 	
 	argmin() (cpmpy.variables.NDVarArray method)

 	argpartition() (cpmpy.variables.NDVarArray method)

 	argsort() (cpmpy.variables.NDVarArray method)

 	astype() (cpmpy.variables.NDVarArray method)

B

 	
 	base (cpmpy.variables.NDVarArray attribute)

 	
 	BoolVarImpl (class in cpmpy.variables)

 	byteswap() (cpmpy.variables.NDVarArray method)

C

 	
 	choose() (cpmpy.variables.NDVarArray method)

 	clip() (cpmpy.variables.NDVarArray method)

 	compress() (cpmpy.variables.NDVarArray method)

 	conj() (cpmpy.variables.NDVarArray method)

 	conjugate() (cpmpy.variables.NDVarArray method)

 	copy() (cpmpy.variables.NDVarArray method)

 	
 cpmpy.expressions

 	module

 	
 cpmpy.model

 	module

 	
 cpmpy.solver_interfaces.minizinc_python

 	module

 	
 	
 cpmpy.solver_interfaces.minizinc_text

 	module

 	
 cpmpy.solver_interfaces.ortools_python

 	module

 	
 cpmpy.solver_interfaces.solver_interface

 	module

 	
 cpmpy.variables

 	module

 	ctypes (cpmpy.variables.NDVarArray attribute)

 	cumprod() (cpmpy.variables.NDVarArray method)

 	cumsum() (cpmpy.variables.NDVarArray method)

D

 	
 	data (cpmpy.variables.NDVarArray attribute)

 	diagonal() (cpmpy.variables.NDVarArray method)

 	dot() (cpmpy.variables.NDVarArray method)

 	
 	dtype (cpmpy.variables.NDVarArray attribute)

 	dump() (cpmpy.variables.NDVarArray method)

 	dumps() (cpmpy.variables.NDVarArray method)

E

 	
 	ExitStatus (class in cpmpy.solver_interfaces.solver_interface)

F

 	
 	fill() (cpmpy.variables.NDVarArray method)

 	flags (cpmpy.variables.NDVarArray attribute)

 	
 	flat (cpmpy.variables.NDVarArray attribute)

 	flatten() (cpmpy.variables.NDVarArray method)

G

 	
 	getfield() (cpmpy.variables.NDVarArray method)

I

 	
 	imag (cpmpy.variables.NDVarArray attribute)

 	IntVarImpl (class in cpmpy.variables)

 	
 	item() (cpmpy.variables.NDVarArray method)

 	itemset() (cpmpy.variables.NDVarArray method)

 	itemsize (cpmpy.variables.NDVarArray attribute)

M

 	
 	make_and_from_list() (cpmpy.model.Model method)

 	max() (cpmpy.variables.NDVarArray method)

 	mean() (cpmpy.variables.NDVarArray method)

 	min() (cpmpy.variables.NDVarArray method)

 	Model (class in cpmpy.model)

 	
 module

 	cpmpy.expressions

 	cpmpy.model

 	cpmpy.solver_interfaces.minizinc_python

 	cpmpy.solver_interfaces.minizinc_text

 	cpmpy.solver_interfaces.ortools_python

 	cpmpy.solver_interfaces.solver_interface

 	cpmpy.variables

N

 	
 	nbytes (cpmpy.variables.NDVarArray attribute)

 	ndim (cpmpy.variables.NDVarArray attribute)

 	NDVarArray (class in cpmpy.variables)

 	
 	NegBoolView (class in cpmpy.variables)

 	newbyteorder() (cpmpy.variables.NDVarArray method)

 	nonzero() (cpmpy.variables.NDVarArray method)

 	NumVarImpl (class in cpmpy.variables)

P

 	
 	partition() (cpmpy.variables.NDVarArray method)

 	prod() (cpmpy.variables.NDVarArray method)

 	
 	ptp() (cpmpy.variables.NDVarArray method)

 	put() (cpmpy.variables.NDVarArray method)

R

 	
 	ravel() (cpmpy.variables.NDVarArray method)

 	real (cpmpy.variables.NDVarArray attribute)

 	repeat() (cpmpy.variables.NDVarArray method)

 	
 	reshape() (cpmpy.variables.NDVarArray method)

 	resize() (cpmpy.variables.NDVarArray method)

 	round() (cpmpy.variables.NDVarArray method)

S

 	
 	searchsorted() (cpmpy.variables.NDVarArray method)

 	setfield() (cpmpy.variables.NDVarArray method)

 	setflags() (cpmpy.variables.NDVarArray method)

 	shape (cpmpy.variables.NDVarArray attribute)

 	size (cpmpy.variables.NDVarArray attribute)

 	solve() (cpmpy.model.Model method)

 	(cpmpy.solver_interfaces.solver_interface.SolverInterface method)

 	SolverInterface (class in cpmpy.solver_interfaces.solver_interface)

 	
 	SolverStatus (class in cpmpy.solver_interfaces.solver_interface)

 	sort() (cpmpy.variables.NDVarArray method)

 	squeeze() (cpmpy.variables.NDVarArray method)

 	status() (cpmpy.model.Model method)

 	std() (cpmpy.variables.NDVarArray method)

 	strides (cpmpy.variables.NDVarArray attribute)

 	sum() (cpmpy.variables.NDVarArray method)

 	supported() (cpmpy.solver_interfaces.solver_interface.SolverInterface method)

 	swapaxes() (cpmpy.variables.NDVarArray method)

T

 	
 	T (cpmpy.variables.NDVarArray attribute)

 	take() (cpmpy.variables.NDVarArray method)

 	tobytes() (cpmpy.variables.NDVarArray method)

 	tofile() (cpmpy.variables.NDVarArray method)

 	
 	tolist() (cpmpy.variables.NDVarArray method)

 	tostring() (cpmpy.variables.NDVarArray method)

 	trace() (cpmpy.variables.NDVarArray method)

 	transpose() (cpmpy.variables.NDVarArray method)

V

 	
 	var() (cpmpy.variables.NDVarArray method)

 	
 	view() (cpmpy.variables.NDVarArray method)

 Send More Money

Send More Money

Now let us take a look in detail how easy is to integrate cp programming through the Send More Money example.
First we need to import all the tools that we will need to create our CP model:

from cpmpy import *
import numpy as np

Secondly, as in every constraint programming model we need to define variables and constraints. Variables are introduced
as follows:

s,e,n,d,m,o,r,y = IntVar(0,9, 8)

This line indicates that we are creating 8 integer variables, s,e,n,d,m,o,r,y, with domain between 0 and 9. In general, the sintax to generate
n integer variables between a and b is

ListOfVariables = [IntVar(a,b,n)]

Constraints are included in the model as a list. First, we create a list to add the constraints. Then, we append an ‘all different constraint’ in a straightforward fashion. Finally, we add the constraint saying SEND + MORE = MONEY.

constraint = []
constraint += [alldifferent([s,e,n,d,m,o,r,y])]
constraint += [sum([s,e,n,d] * np.flip(10**np.arange(4)))
 + sum([m,o,r,e] * np.flip(10**np.arange(4)))
 == sum([m,o,n,e,y] * np.flip(10**np.arange(5)))]

Note that we can use numpy library to efficiently state the last constraint. As final modeling step we need to create a Model object. To do this, we need to state the model
object with the list of constraints as argument.

model = Model(constraint)

We finally solve the CSP with the following command:

stats = model.solve()

where the variable python status saves the exit status of the feasibility problem and the execution time. In this case: ExitStatus.FEASIBLE (0.24 seconds), indicating that the problem was solved by finding a feasible solution, i.e. a solution that satisfies all the constraints.

In the case that you may add an objective function, a second argument must be added. This can be a maximization or a minimization. As we aim to maximize the value
of the word MONEY.

coefs = np.flip(10**np.arange(5))
objective = np.dot([m,o,n,e,y],coefs)
model = Model(constraint, maximize = objective)

Note that in this COP the exit status changes to ExitStatus.OPTIMAL (0.24 seconds), indicating that we found an optimal solution, i.e. the best amongst all the feasible solutions.

 Send More Money

Send More Money

Now let us take a look in detail how easy is to integrate cp programming through the Send More Money example.
First we need to import all the tools that we will need to create our CP model:

from cpmpy import *
import numpy as np

Secondly, as in every constraint programming model we need to define variables and constraints. Variables are introduced
as follows:

s,e,n,d,m,o,r,y = IntVar(0,9, 8)

This line indicates that we are creating 8 integer variables, s,e,n,d,m,o,r,y, with domain between 0 and 9. In general, the sintax to generate
n integer variables between a and b is

ListOfVariables = [IntVar(a,b,n)]

Constraints are included in the model as a list. First, we create a list to add the constraints. Then, we append an ‘all different constraint’ in a straightforward fashion. Finally, we add the constraint saying SEND + MORE = MONEY.

constraint = []
constraint += [alldifferent([s,e,n,d,m,o,r,y])]
constraint += [sum([s,e,n,d] * np.flip(10**np.arange(4)))
 + sum([m,o,r,e] * np.flip(10**np.arange(4)))
 == sum([m,o,n,e,y] * np.flip(10**np.arange(5)))]

Note that we can use numpy library to efficiently state the last constraint. As final modeling step we need to create a Model object. To do this, we need to state the model
object with the list of constraints as argument.

model = Model(constraint)

We finally solve the CSP with the following command:

stats = model.solve()

where the variable python status saves the exit status of the feasibility problem and the execution time. In this case: ExitStatus.FEASIBLE (0.24 seconds), indicating that the problem was solved by finding a feasible solution, i.e. a solution that satisfies all the constraints.

In the case that you may add an objective function, a second argument must be added. This can be a maximization or a minimization. As we aim to maximize the value
of the word MONEY.

coefs = np.flip(10**np.arange(5))
objective = np.dot([m,o,n,e,y],coefs)
model = Model(constraint, maximize = objective)

Note that in this COP the exit status changes to ExitStatus.OPTIMAL (0.24 seconds), indicating that we found an optimal solution, i.e. the best amongst all the feasible solutions.

 Constraint Programming

Constraint Programming

Many real-life decisions involve a large number of options. To decide if a problem is feasible or finding the best one amongst all the options is hard task to do by hand. In other words, to enumerate all the possible combinations of single decisions and evaluate them is infeasible in practice. To avoid this “brute force” approach, the paradigm of constraint programming (CP) allow us to:

	Model relationships between single decisions smartly

	Give an answer efficiently.

A constraint satisfaction problem (CSP) consists of a set of variables and constraints stablishing relationships between them. Each variable has a finite of possible values (its domain). The goal is to assign values to the variables in its domains satisfying all the constraints. A more general version, called constraint optimization programming (C0P), finds amongst all the feasible solutions the one that optimizes some measure, called ‘objective function’.

What is necessary to model a CP?

A typical CP is defined by the following elements:

Variables: define variables and domain. Types of domains for different types of variables.

Constraints: Short summary of constraints

Moreover, if we want to model an optimization problem we also need an objective function.

Example

A cryptarithmetic puzzle is a mathematical exercise where the digits of some numbers are represented by letters (or symbols). Each letter represents a unique digit. The goal is to find the digits such that a given mathematical equation is verified.

For example, we aim to allocate to the letters S,E,N,D,M,O,R,Y a digit between 0 and 9, being all the letters allocated to a different digit and such that the expression:

SEND + MORE = MONEY

is satisfied. This problem lies into the setting of constraint satisfaction problem (CSP). Here the variables are each letter S,E,N,D,M,O,R,Y and their domain is {0,1,2,…,9}. The constraints represents the fact that

The cpmpy implementation for this CSP looks like:

from cpmpy import *
import numpy as np

Construct the model
s,e,n,d,m,o,r,y = IntVar(0,9, 8)

constraint = []
constraint += [alldifferent([s,e,n,d,m,o,r,y])]
constraint += [sum([s,e,n,d] * np.flip(10**np.arange(4)))
 + sum([m,o,r,e] * np.flip(10**np.arange(4)))
 == sum([m,o,n,e,y] * np.flip(10**np.arange(5)))]

model = Model(constraint)
print(model)

stats = model.solve()
print(" S,E,N,D = ", [x.value() for x in [s,e,n,d]])
print(" M,O,R,E = ", [x.value() for x in [m,o,r,e]])
print("M,O,N,E,Y =", [x.value() for x in [m,o,n,e,y]])

A possible feasible allocation/solution is

S,E,N,D = [2, 8, 1, 7]
M,O,R,E = [0, 3, 6, 8]
M,O,N,E,Y = [0, 3, 1, 8, 5]

Note that we can find an slightly different version of this problem by optimizing an objective function, for example, optimizing the number formed by the word MONEY:

 Installation instructions

Installation instructions

CPMpy requires Python 3.6 or newer and is also installed with OR-Tools as default solver. Since the package is available on PYPI [https://pypi.org/], the best way is to open up a new command line window and run

$ pip install cpmpy

If the previous command fails to execute, it may be due to the permission to install the package globally Python packages.

$ pip install cpmpy –user

CPMpy can be later upgraded to the latest version using:

$ pip install -U cpmpy

If Or-Tools is not installed yet or is not yet upgraded to the latest version, run the following command

$ python -m pip install –upgrade –user ortools

Minizinc Installation and Configuration (optional)

A complete installation guide for the installation of Minizinc is available at Minizinc Install Guide [https://www.minizinc.org/doc-2.5.3/en/installation.html#installation]

For linux users, if __snap__ is installed, Minizinc installation amounts to running

$ snap install minizinc –classic

Otherwhise, the installation with the bundled Minizinc is straightforward (see https://www.minizinc.org/doc-2.5.3/en/installation.html#archive). The installation step boil down to:

	Go to Minzinc Download <https://www.minizinc.org/software.html> and download the latest version of the binaries.

	After downloading, uncompress the archive, for example in your home directory or any other location where you want to install it:

tar xf MiniZincIDE-__replace_by_version__-bundle-linux-x86_64.tgz

	Add the following lines to your .bashrc file (or .zshrc when using zsh):

export PATH=MiniZincIDE-__replace_by_version__-bundle-linux-x86_64/bin:$PATH
export LD_LIBRARY_PATH=MiniZincIDE-__replace_by_version__-bundle-linux-x86_64/lib:$LD_LIBRARY_PATH
export QT_PLUGIN_PATH=MiniZincIDE-__replace_by_version__-bundle-linux-x86_64/plugins:$QT_PLUGIN_PATH

	Close the current terminal window or reload your .bashrc by running source .bashrc

	Check the minizinc install in a new terminal window and run

$ minizinc

The following information (or similar) should appear on your terminal

minizinc: MiniZinc driver.
Usage: minizinc [<options>] [-I <include path>] <model>.mzn [<data>.dzn …] or just <flat>.fzn

Minzinc-Python Installation and Configuration (optional)

Warning

Make sure you first install Minizinc on your system before attempting to install MiniZinc-Python

The MiniZinc-Python install amounts to running the following command in a terminal window.

$ pip install minizinc

nav.xhtml

 Table of Contents

 		
 CPMpy: CP modeling made easy in Python

 		
 Constraint Programming: a quick CPMpy prototype

 		
 Constraint Programming

 		
 What is necessary to model a CP?

 		
 Example

 		
 References

 		
 CPMpy’s pipeline

 		
 The language

 		
 The mechanism

 		
 Flattened ‘normal form’

 		
 Special case 1, linear constraints:

 		
 Special case 2, reification:

 		
 Expressions

 		
 List of classes

 		
 Module description

 		
 Module details

 		
 Model

 		
 List of classes

 		
 Module description

 		
 Module details

 		
 Variables

 		
 List of classes

 		
 Module description

 		
 Module details

 		
 Solver Interfaces (